Содержание
- Комментарии 55
- Что такое мощность двигателя
- Что такое крутящий момент двигателя
- Мощность или крутящий момент — что важнее?
- Некоторые выводы
- Изменение крутящего момента и динамика автомобиля
- Рекомендуем посмотреть:
В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных. Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся. Для примера рассмотрим АИР80В2У3.
Номинальная механическая мощность асинхронного электродвигателя
На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.
Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.
Номинальная активная электрическая мощность асинхронного электродвигателя
Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.
Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.
Номинальная полная электрическая мощность асинхронного электродвигателя
Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.
Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.
Номинальная реактивная электрическая мощность асинхронного электродвигателя
Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.
Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:
Q = √( 3046 2 – 2650 2 ) = 1502 ВАР
Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.
Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.
Частота вращения ротора асинхронного электродвигателя
На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.
Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду. Но поскольку двигатель асинхронный, то ротор вращается с отставанием на величину скольжения s.
Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:
s = ( ( n – n1 )/ n) *100%
Для нашего примера s = ( (3000 – 2870)/3000 ) *100% = 4,3%.
Угловая скорость асинхронного двигателя
Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.
Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.
Линейная скорость асинхронного электродвигателя
Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:
Номинальный вращающий момент асинхронного двигателя
Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:
Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:
Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.
Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.
Читайте также: Свистит ремень генератора матиз
Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.
Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.
Как известно — стенды измеряют момент с колёс, (или все-таки мощность напрямую?) а мощность получается путём пересчёта.
Вот нашёл такую формулу, теперь каждый может проверить свой график.
Формула расчета мощности в зависимости от крутящего момента и оборотов двигателя:
P = Mкр х N : 9549, где:
Р — мощность в кВт (кило Ваттах)
Mкр — крутящий момент в Hм (Ньютона метрах)
N — обороты мотора об/мин
9549- это коэффициент, что бы не возится с косинусами альфа и обороты подставлять в об/мин.
Например, если мотор выдает 357 Нм момента при 4400 об/мин, его мощность в киловаттах:
357 x 4400 : 9549 =164,5 (кВт)
164.5 х 1.36 = 223,72 л.с.
Я свой график проверил))
PS: Так я прав: Первично на барабанах снимают момент в Нм?
А силы получают расчётом?
Комментарии 55
стенд измеряет мощность, а момент высчитывает
Что измеряет омметр?
Правильно, сопротивление.
Но на самом деле, чтобы измерить сопротивление, нужно приложить к измеряемому объекту напряжение, измерить ток, протекающий через этот объект, затем поделить напряжение на ток.
Так что измеряет омметр?
ТОК!
А сопротивление он вычисляет.
Мощность — это работа, совершенная за какой-то промежуток времени.
Мы можем измерить мощность?
Мы можем измерить произведенную работу,
и поделить ее на время.
Однажды заехал электромобиль. У него тахометра с оборотами как такового нету. Разьема ОБД нету. Но есть спидометр. Синхронизацию делали по спидометру (по соответствию скорости). Ну какая там точность?
В принципе момент можно нарисовать ЛЮБОЙ. Т.к. сделав неточность (специально завышенную или заниженную по величине синхронизацию) выставления оборотов-скорости ВЫ получите, что пожелаете!
А значит стендом мерится НЕ МОМЕНТ … а мощность
Есть мощность и момент КОЛЕСНЫЕ. В сумме с механическими потерями получается мощность МОТОРНАЯ.
Но что первично мерится МОМЕНТ или МОЩНОСТЬ? (переписываю ВАш вопрос).
Логика говорит, что момент первичен и уже потом пересчет в мощность. Однако наблюдая за работой колесного стенда картина выглядит наоборот…т.е.
— В большинстве случаев операторы делают синхранизацию скорости вращения роликов стенда с оборотами замеряемого ДВИГАТЕЛЯ. У стендов есть такая опция.
Измерение оборотов можно сделать и традиционными методами, скажем прищепкой индукции прикрепленной на высоковольтный провод или оптическим методом от вращения шкиваколенвала и т.п.
Однако в большинстве используют именно синхронизацию вращения роликов с оборотами ДВС.
Предположим мы вообще не делаем синхранизацию. Т.е. стенду быдут передаваться лживые обороты двигателя. Делая замер мотора фольцваген ПОЛО 1,6 литра (атмосферный), Вы получите примерно следующие цифры…
Что по мощности соответствует с реалиями, а по моменту нет! Точность выставления оборотов ДВС и скорости вращения роликов ВАЖНА. НЕ точность приводит и лживому расчету (преесчету) момента.
Но мощность ВСЕГДА верная! А момент может быть разный. Исходя из этого я утверждаю, что замеряется мощность, а момент ПЕРЕСЧИТЫВАЕТСЯ из данных мощности.
вот и реальная картинка замера без синхронизации оборотов двс и скорости роликов. forum.bratsk.org/attachme…ent >
Все верно, стенду вообще ничего не нужно знать об измеряемом а/м (кроме типа привода), он измерит мощность на своих барабанах (или ступицах) и получим первичный график мощности от линейной скорости точки соприкосновения колеса и барабана.
А вот чтобы получить крутящий момент двигателя с потерями в трансмиссии и т.п., нужно уже знать обороты двигателя, т.е. привязку оборотов двигателя к скорости колеса.
Стенды измеряют МОЩНОСТЬ, причем с колёс. Моторная мощность и момент — расчётные величины.
А alexkolomna утверждает обратное)
Я видел.
Вот тебе много букв и много формул: www.drive2.ru/b/2914486/
Это один из текстов, который я почти на изусть знаю)))
А вот ключевые слова именно про инерционный стенд ( читата из текста по ссылке))))
Получается, что все нужное для определения мощности есть – момент (МОМЕНТ !) инерции известен, угловую скорость измеряет датчик вращения на оси, время может отсекать управляющий компьютер.
Так ты сам всё притягиваешь к "курица-яйцо". Стенд занимается измерением мощности с колёс, зная константы. Далее все остальные расчёты.
Момент первичен)
И только потом мощность.
Если не верно указать момент энерции стенда — все остальные расчеты пойдут прахом
Холивара не будет, мы разговариваем на разных языках, я лучше сольюсь.
Так ты сам всё притягиваешь к "курица-яйцо". Стенд занимается измерением мощности с колёс, зная константы. Далее все остальные расчёты.
Я всегда думал что стенд сделан по уму… а тут
Читайте также: Свистит колесо при повороте
Вот если бы на стенде стоял генератор и нагрузка: резистор не хилый. Расчетные и практические КПД генератора как константа и вот вам чистая мощность… ток умножаем на напряжение. Нагружаем мотор как хотим Этим резистором.
Да стенд немного усложняется зато киловат в киловат покажет а дальше можно считать и момент и все остальное относительно оборотов движка снятых с диагностического шнура.
Значительно проще и не менее точно посчитает инерционный стенд, с достаточной массой подвижной системы. И не нужно ничего выдумывать.
Предложенная тобой схема, на сколько мне известно, не используется, предположу, что проблемы будут с надежностью и температурной стабильностью. К тому же это не решает самой главной проблемы: стенд по прежнему продолжает измерять мощность с колёс.
Температурная стабильность и все дела все это фигня — печка на 200 кВт пару минут поработает. Даже на пару градусов температура в гараже не поднимится.
Сколес мериет мощность — а она так сильно отличается от моторной? потери на трансмиссии минимальные. Да и какая радость от мощности мотора если фактически используется мощность с колес.
Инерционный стенд в совокупности с колесами взаимодействует а инерционность колес как раз и вносит погрешность измерений. А при измерении тепловой мощности — никакие инерции не внесут погрешность.
Нравится мне, как за 20 минут, тыкая в кнопки клавиатуры, один человек ломает привычную всем картину.
Но не буду я и с тобой спорить. Собери правильный стенд и докажи всем производителям подобного оборудования, а за одно и нам, что твоя теория верна, а все вокруг заблуждались.
Ага мне тоже нравится за 20 минут разломать привычную картину )))
Я не говорю что все вокруг заблуждаются — просто надо понимать что он может измерить имея такой принцип работы.
Давно подумывал собрать сненд такого типа как описал выше, тока генератор дороговат получится.
С законами физики не поспоришь что тут сделать.
Ища инфу натыкаюсь на интересные факты. когда потери на трансмисии достигают 10%-20% — это мотор крутанул до 100 кВт и 10 кВт выделяется на коробке, подшибниках и тягах — 10кВт печка разогреет до красна карданы и тяги к гранатам.
Отсюда вывод что такого быть не может. т.к. никакого тепла не выделяется, по факту. 0,5% не более т.к. подшибники и смазка есть — да нагрев идет незначительный и то больше от колодок чем от потерь на трении всех частей.
Отсюда вывод что стенд измеряет мощность в совокупности с инерционностью колес и шестеренок. Если знать все массы и размеры и построить формулу то все встанет на свои места, а когда масса колеса и всего остального неизвестна то остается догадываться что он там мериет. и почему разница мощности мотора и мощности с колес такая разная получается. — а по факту ее тупо подгоняют имея массу, размер колеса и массу размер вала.
Отсюда и типа литье поставил (легкие диски и машина сразу на 5 лошадок стала мощнее) откуда двигатель становится мощнее если прикрутили диски другие. как вес диска влияет на мощность мотора — никак.
По факту разгон быстрее машине веселее — ДА т.к. инерционность колеса становится меньше и раскрутить мотору проще 3 кг колесо чем колесо в 15 кг. и примерный расчет что 1 кг массы колеса равносилен 40 кг груза в авто. — так и получается. т.к. затраты на кинетическую энергию меньше.
Никто не заморачивается из производителей стендов т.к. всех устраивает то что есть и пару валов на палку насадить и поставить датчик с компом куда проще чем делать настоящую измерительную систему. которую не надо калибровать под каждый авто и которая будет мерить ту мощность которая есть.
Механизмы, узлы или детали автомобиля, все вместе и каждый по отдельности, безусловно важны, но основным элементом конструкции конечно же является двигатель. Анализ технических характеристик этого генератора движущей силы позволяет судить о том, насколько быстро авто набирает определенную скорость, как изменяются его тяговые и динамические возможности при увеличении его массы, езде в сложных дорожных условиях.
Базовые параметры двигателей внутреннего сгорания, бензиновых или дизельных, которые устанавливаются на абсолютное большинство современных легковых автомобилей, можно условно разбить на две группы.
Конструктивно заданные характеристики закладываются при проектировании и в процессе производства силового агрегата, являются неизменными в процессе эксплуатации:
- тип двигателя (бензиновый или дизельный);
- рабочий объем;
- степень сжатия топливовоздушной смеси.
Показателями, характеризующими работу мотора или так называемыми рабочими параметрами, являются:
- мощность;
- крутящий момент;
- удельный расход топлива.
Наибольший интерес вызывают параметры, от которых напрямую зависят динамические свойства автомобиля – это мощность и крутящий момент двигателя. Что же из себя представляют эти характеристики?
Что такое мощность двигателя
В официальных описаниях технических характеристик силовых агрегатов, параллельно с указанием мощности, обязательно приводится значение крутящего момента. Понятие мощности двигателя и понимание этого параметра, как правило, не вызывает сложностей – это физическая величина, характеризующая работу двигателя, выполняемую за единицу времени. То есть, мощность показывает, как быстро сможет автомобиль, имеющий определенную массу, преодолеть заданное расстояние. Чем больше мощность, тем больше максимальная скорость при неизменной снаряженной массе.
Читайте также: Диски на ваз 21099 какие идут
Мощность измеряется в ваттах или киловаттах (кВт), а также в лошадиных силах. Стоит отметить, что «лошадиная сила» – это внесистемная единица измерения (1 лошадиная сила = 735,5 Вт или 1 кВт = 1,36 л. с.).
Что такое крутящий момент двигателя
Несколько по-иному обстоит ситуация с пониманием крутящего момента, но, зная основные законы физики и базовое устройство силового агрегата, можно без труда прояснить это понятие. Крутящий момент двигателя – это качественный показатель, характеризующий силу вращения коленчатого вала. Этот параметр рассчитывается как произведение силы, приложенной к поршню, на плечо (расстояние от центральной оси вращения коленчатого вала до места крепления поршня (шатунной шейки)). Крутящий момент измеряется в ньютонах на метр (Нм).
Крутящий момент на коленчатом валу, как следует из вышеприведенной формулы, зависит от силы давления газов на поршень, а также от рабочего объема двигателя и степени сжатия топливной смеси в цилиндрах. Кстати сказать, значительно более высокий крутящий момент дизельных двигателей, по сравнению с аналогичными по объему бензиновыми моторами, объясняется чрезвычайно высокой степенью сжатия смеси дизельного топлива и воздуха в камерах сгорания (бензиновые — примерно 10:1, дизельные – около 20:1).
Высокий крутящий момент двигателя обеспечивает автомобилю отличную динамику разгона уже при низких оборотах вращения коленчатого вала, существенно увеличивает тяговые характеристики силового агрегата – повышает грузоподъемность авто и его проходимость.
Максимальное значение крутящего момента двигатель внутреннего сгорания достигает при определенных оборотах. У бензиновых моторов этот показатель более высокий, чем у «дизелей».
Мощность или крутящий момент — что важнее?
Если провести сравнительную оценку двух рабочих характеристик двигателя – мощности и крутящего момента, то очевидными становятся следующие факты:
- крутящий момент на коленчатом валу – основной параметр, характеризующий работу силового агрегата;
- мощность двигателя – это вторичная рабочая характеристика мотора, которая, по своей сути, является производной крутящего момента;
- зависимость мощности от крутящего момента выражается отношением: Р = М*n, где Р – мощность, М – крутящий момент, n – количество оборотов коленчатого вала в минуту;
- мощность двигателя линейно зависима от частоты вращения коленчатого вала: чем выше обороты, тем больше мощность мотора (естественно, до определенных пределов);
- крутящий момент также увеличивается при повышении оборотов двигателя, но достигнув своего максимального значения (при определенной частоте вращения коленчатого вала), его показатели снижаются, независимо от дальнейшего увеличения оборотов (график зависимости крутящего момента от частоты вращения двигателя имеет вид перевернутой параболы).
Некоторые выводы
- При оценке эксплуатационных параметров автомобиля и непосредственно рабочих характеристик его двигателя, величина крутящего момента обладает большим приоритетом, чем мощность.
- Среди силовых агрегатов, имеющих схожие конструктивные и рабочие параметры, предпочтительнее выглядят те, у которых крутящий момент больше.
- Для обеспечения наилучшей динамики разгона автомобиля и обеспечения оптимальных тяговых свойств двигателя, частоту вращения коленчатого вала нужно поддерживать в том диапазоне значений, при которых крутящий момент достигает своих пиковых показателей.
Изменение крутящего момента и динамика автомобиля
Чтобы обеспечить наилучшие динамические характеристики, автопроизводители стремятся устанавливать на автомобили силовые агрегаты, обладающие максимальным крутящим моментом в более широком диапазоне оборотов двигателя. Высокий крутящий момент характерен для дизельных силовых агрегатов, а также многоцилиндровых и турбированных моторов.
Чтобы правильно оценивать роль мощности и крутящего момента в формировании динамических характеристик автомобиля, нужно уяснить следующие факты:
- автомобиль с более мощным, но не обладающим достаточным крутящим моментом двигателем, будет уступать в разгонной динамике авто с высоким крутящим моментом;
- высокий крутящий момент, «подхватываемый» двигателем на низких оборотах, позволяет автомобилю ускоряться значительно эффективней;
- максимально возможная скорость автомобиля напрямую зависит от мощности двигателя, а крутящий момент не влияет на этот показатель: автомобили, обладающие огромным крутящим моментом, могут развивать весьма скромную максимальную скорость; пример: спортивные болиды (небольшой крутящий момент на карданном валу и высокая скорость) или тяжелые внедорожники (внушительный крутящий момент и невысокая максимальная скорость).
Независимо от мощности двигателя, разгонная динамика автомобиля, а также его способность «резво» преодолевать подъемы всецело зависят от величины максимального крутящего момента. Чем больший крутящий момент передается на ведущие колеса и чем шире диапазон оборотов двигателя, в котором он достигается, тем увереннее авто ускоряется и преодолевает сложные участки дороги.
Стоит заметить, что сравнение характеристик конструкционно идентичных, но имеющих разные крутящие моменты двигателей, имеет смысл только при одинаковых параметрах трансмиссии; коробки переключения передач должны обладать схожими передаточными отношениями. В противном случае, сравнивать крутящие моменты двигателей не имеет практического смысла.
Источник: