В бортовой сети автомобиля существует ряд элементов создающих множество помех, скачков напряжения, импульсов обратного тока. Такое нестабильное питание может привести к повреждению или полному выходу светодиодов из строя. Для того, чтобы защитить светодиоды следует принять определенные меры, включающие:
1. Установка предохранительного диода
Рисунок 1. Защита от импульсов обратного тока
Для данной цели мы рекомендуем использовать диоды 1N4007 (арт.40009) или SMD SK26A (арт.40010). Также можно использовать выпрямительный мост SMD (арт.40011), в таком случае модуль будет работать при подключении в любой полярности. Не стоит забывать, про падение напряжения на диоде (обычно от 0.5В до 1В, в зависимости от силы тока) которое следует учитывать при расчете параметров элементов схемы.
2. Установка стабилизатора тока
Для того, чтобы изготовить простейший стабилизатор тока понадобятся стабилизатор с регулируемым выходным напряжением LM317T и резистор мощностью 2Вт.
Рисунок 2. Стабилизатор с регулируемым выходным напряжением LM317T
Схема стабилизатора тока выглядит следующим образом:
Рисунок 3. Схема стабилизатора тока
Номинал резистора для необходимого тока достаточно просто рассчитывается по формуле указанной под схемой. Общую схему подключения светодиодов следует рассчитывать с учетом падения напряжения на стабилизаторе, как минимум, 2,5В. При этом можно упразднить токоограничительные резисторы. Следует отметить, что стабилизатор LM317T рассеивает излишнее напряжение в тепло, и чем больше падение напряжения на нем, тем сильнее следует задуматься об установке радиатора на его теплоотвод.
3. Установка электролитического конденсатора
Конденсатор подключается параллельно схеме с учетом полярности. Он избавит светодиодный модуль от "дрожания" при заведенном двигателе и "моргания" при кратковременном падении напряжения (например, включенных указателях поворота).
После того, как я занялся LED-тюнингом своей верки, одним из наиболее частых вопросов, которые я слышу от заинтересованных лиц, является вопрос как я их подключил. На этот вопрос я и постараюсь ответить в данной статье.
Начнем с того, что диоды, которые продаются у нас, можно разделить на несколько категорий:
-
Диоды с резистором, которые вы купите на авторынке, скорее всего будут рассчитаны на 12-14 вольт на входе, которые резистор понижает до номинального для диода напряжения в
3.3 вольта и упакованы они будут в небольшой корпус, из которого будут торчать 2 ноги – плюс и минус. Но, конечно, диоды бывают разные, и перед покупкой, обязательно узнайте, подойдет ли этот диод для подключения к бортовой сети автомобиля.
Обычные белые светодиоды
Но как подключить такие диоды в машине? Опять же, есть несколько способов.
Для начала развею самый популярный "светодиодный" миф: для подключения диодов обязательно нужен резистор, без него диод обязательно сгорит. Глупость это несусветная: у каждого диода, как мы уже заметили, есть такой показатель, как номинальное напряжение. Это напряжение, при котором диод будет жрать свой номинальный ток. Если напруга будет меньше – то и ток, соответственно, будет меньше, а яркость, в свою очередь, будет ниже. Так вот, если на диод приходит напряжение меньшее или равное номинальному, то никакой резистор ему не нужен! Все, миф развеян, теперь продолжим по способам подключения.
Способ с параллельным соединением кусков по 4 или 5 последовательно подключенных диодов – это вообще бред. Ведь не стоит забывать, что напряжение в бортовой сети не всегда составляет 12 вольт, оно то просаживается до 11,8, если слушать музыку с заглушенным движком, то поднимается до 14,5, если его завести. Поэтому, если, руководствуясь этим способом, взять 4 диода – то получим на каждом 3 и 3.6 вольт на незаведенной и заведенной машине соответственно, причем если при 3х вольтах диоды будут светить довольно слабо, то при долгой подаче на них 3.6 вольт они неумолимо деградируют и, в итоге, сгорят нафиг. А если взять 5 штук, то они вообще будут еле светить в обоих случаях. И вот, мы плавно подобрались ко второму, самому популярному способу – подключению диодов через резистор, и тут же встает вопрос: как рассчитать его мощность и сопротивление? Разберемся.
Вспомним из уроков физики в школе закон Ома: R=U/I, что означает: сопротивление = напряжению, деленному на ток. Поэтому, зная рабочий ток каждого диода (у большинства 3,3 вольтовых образцов этот ток составляет 20 миллиампер, смотрите тех.данные у продавца), количество и способ подключение диодов в нашей сети а также планируемое напряжение на входе, мы легко можем рассчитать, каким же сопротивлением должен обладать резистор. Например, у нас есть 7 диодов с номинальным током 20 миллиампер и напряжением 3,3 вольта. Рассчитаем для них резистор, приняв напряжение в бортовой сети = 14,5 вольтам: R14,5-3,3)/((7*20)/1000)=80, то бишь, грубо говоря, для такой конструкции нам нужен резистор, номиналом 80 Ом. Но лучше, на всякий случай, брать резистор номиналом чуть больше – чем меньше ток на диодах – тем дольше они проживут.
Читайте также: Почему на низких оборотах машина дергается
Иногда бывает нужно параллельно соединить последовательные пары по несколько одинаковых диодов. В этом случае все считается по той же формуле, но теперь мы считаем каждую последовательную пару как один диод, напряжение которого равно сумме напряжений образующих пару диодов, например для 7 параллельно соединенных пар последовательно соединенных диодов, представленных выше, формула будет выглядеть так: (14,5-6,6)/((7*20)/1000)=56,4.
Далее, озадачимся вопросом: какой мощности нужно подбирать резистор? Для ответа на него берем ту же формулу, по которой считали его сопротивление, только первый знак деления меняем на знак умножения, получим мощность в ваттах. Резистор подбираем с хорошим запасом относительно этой мощности, иначе греться будет капитально.
Но не надо думать, что резисторы – лучшее решение, ведь это далеко не так, и вот почему:
- Яркость диодов будет меняться в зависимости от напряжения в бортовой сети. Если резистор подбирался под заведенный движок, то на незаведенном они будут тускнеть, а если под незаведенный – при заведенном будут работать на износ. Да и смотреться проседающая яркость при запуске двигателя будет совсем не солидно.
- По мере выхода диодов из строя (а рано или поздно это начнет происходить) ток на оставшихся в живых будет увеличиваться, что естественным образом будет все быстрее и быстрее приближать момент их кончины.
- Может быть не так просто найти резистор нужного номинала, да и еще с запасом по мощности.
Поэтому расскажу о третьем, самом лучшем решении, которое я не только рекомендую использовать всем без исключения, но и использую сам: микросхемы – стабилизаторы напряжения (по состоянию на 2016 год есть отличный альтернативный вариант, смотрите в конце статьи).
Стабилизаторы напряжения AZ1085T-3.3
Стабилизаторов на рынке представлено множество, как отечественных, так и импортных, цены одной штуки, способной запитать все наши диоды, не превышают $1, поэтому это не только удобное и качественное, но еще и очень дешевое решение. Последнее время для своих диодных проектов я использую стабилизаторы AZ1085T-3.3. Хотя у вашего поставщика радиодеталей может и не быть конкретно этой модели – не отчаивайтесь – берите любой аналог, удостоверившись, что вы берете модель с фиксированным напряжением 3,3 вольта (3.3 в названии микрухи), т.к. бывают варианты как с другой напругой, т.к. и мо в которых напряжение подстраивается вручную, но их, в рамках данной статьи, я рассматривать не буду. Одна и та же микросхема может быть выпущена в разных корпусах. Нам нужно выбрать такой корпус, который мы бы могли без проблем прикрутить к радиатору, и корпус TO-220 идеально для этого подходит (буква T в названии выбранной мной микрухи). При покупке также стоит обратить внимание на такие параметры, как максимальный выходной ток и максимальное входное напряжение, либо спросив у продавца, либо загуглив в интернете datasheet на интересующую вас модель стабилизатора. Этот же даташит покажет нам правильную распиновку микросхемы – они могут отличаться на разных моделях.
- Vin (input) – это вход микросхемы, его надо подключить к плюсу вашей сети.
- Vout (output) – выход 3.3 вольта – на него вешаем диоды.
- GND (ground) – общая земля, минусовой контакт. Обратите внимание, что на корпусе микросхемы не всегда будет земля, в случае с моими микрухами на корпусе оказался Vout.
Итак, микросхема выбрана и куплена, теперь нужно найти для нее подходящий радиатор и прикрутить ее к нему, не забыв (желательно) смазать соприкасающиеся поверхности термопастой (КПТ-8 или любой другой, например, использующимися как термоинтерфейс между кулером и процессором). Радиатор подойдет любой и от чего угодно – главное, чтобы его размеры позволяли закрепить его в машине и не позволяли перегреваться микросхеме (тут как с видеокартой – градусов 80 – это норма, хотя желательно 50).
Микросхема уже на радиаторе
Заметьте, что контактировать с кузовом авто, на котором всегда земля, радиатор сможет лишь в том случае, если на корпусе микрухи будет земля, иначе вы ее попросту закоротите. На входе и выходе микрухи желательно повесить по небольшому конденсатору (16 вольт на вход и 6.3 на выход), от любой материнки. Схема подключения представлена во всех даташитах. Хотя я при, подключении своих диодов, конденсаторами пренебрег – и ничего: диодики все еще живые. 😉 Расположить микросхему лучше прямо рядом с диодами, то есть, если вы тянете назад 3-метровую проводку до диодов, то микруху надо подключать в самом конце, иначе за 3 метра выходные 3.3 вольта могут превратиться в 2.5 (в зависимости от используемого кабеля). Кабель от аккумулятора/выключателя до микросхемы стоит подбирать исходя из надежности его оболочки, а за большим сечением гнаться не стоит – если у вас напряжение до микрухи просядет на несколько вольт 0но и хорошо: сама микруха будет меньше греться. И, конечно же, везде, где вы подключаетесь к бортовой сети – обязательно ставьте соответствующий предохранитель!
Читайте также: Можно ли смешать антифриз разных цветов
Плюсы данного варианта подключения:
- Яркость диодов не зависит от напряжения в бортовой сети: разряжен у вас аккумулятор или же вы несетесь по трассе – на выходе всегда будут 3.3 вольта.
- Т.к. все диоды у вас подключены параллельно, выход из строя любого количества из них никак не повлияет на работу остальных – напряжение ведь стабилизировано!
- Обычно такие микросхемы не только имеют встроенную защиту от короткого замыкания, а еще и от перегрева и от превышения выходного тока.
Как вы уже поняли – этот вариант самый качественный, стабильный и надежный. И только его я рекомендую использовать в любых проектах со светодиодами.
В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать. Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет.
Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением.
Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые — классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут … часа 2-3. Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.
Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.
Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.
Значить как сделать самый простой стабилизатор тока?
Для этого берем если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А.
Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.
А так LM317L с рабочим током до 100 мА.
Для тех кто не знает Vin — это сюда подается напряжение,Vout — отсюда получаем…., а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением.
Минимальное выходное напряжение 1,25 вольта (это если Adjust «посадить» прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.
Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!
Схема включения выглядит следующим образом:
С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться.
На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.
Сопротивление резистора
Примечание
62 Ом
стандартный светодиод
43 Ом
«суперфлюкс» и ему подобные
33 Ом
16 Ом
четырехкристальные
3,9 Ом
одноватные
1,8 Ом
трехватные
1,3 Ом
5 W
А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг….).
Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в «обратке» (и в прямом направлении до 100 ! вольт).
Включить последовательно можно только 3 светодиода — 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.
Читайте также: Multitronics comfort x10 подключение
Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.
P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LM ка потребует радиатор.
Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне.
Количество светодиодов в цепочки надо выбирать с учетом вашего рабочего напряжения минут падения напряжения на стабилитроне минус на диоде.
Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание 20 мАм это рабочий ток для ФИРМЕННЫХ дорогих светодиодов. Только фирменные гарантирует такой ток, поэтому если вы не знаете точного происхождения выбирайте ток в районе 14-15 мАм.
Это для того, что бы потом не удивляться почему так быстро упала яркость или вообще почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому, то что к нам завозят не всегда то, что маркировано на изделии.
Вопрос 1 — сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 вольта. Падение на диоде 0,6. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 вольта. Для автомобиля минимальное напряжение в сети 12,6 — это нормально.
Для белых светодиодов на 20 мАм можно включать 3 шт, для сети 12,6 вольта. Учитывая, что при включенном двигателе нормально рабочее напряжение сети 13,6 вольта (это номинальное, в других вариантах может быть и выше. ), а рабочее LM317до 37 вольт у нас все в норме.
Вопрос 2- как рассчитать сопротивление резистора задающего ток! Хоты выше и было описано, вопрос задают постоянно.
R1 = 125/Ist
где R1 — сопротивление токозадающего резистора в Омах.
1,25 — опорное (минимальное напряжение стабилизации) LM317
Ist — ток стабилизации в Амперах.
Нам нуден ток в 20 мАм — переводим в амперы = 0,02 Ам.
Вычисляем R1 = 1,25 / 0,02 = 62,5 Ома.
Принимаем ближайшее значение 62 Ома.
Еще пару слов о групповом включении светодиодов. Идеальное это последовательное включение со стабилизацией тока.
Светодиоды — это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают в монтируя в изделие защитный диод).
если необходимо подключить массив из светодиодов, то рекомендую такую схему включения
Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.
Как рассчитать значение гасящего резистора для светодиода. Расчет проводиться по закону Ома.
Ток в цепи равен напряжение разделить на сопротивление цепи.
I led = V pit / на сопротивление диода и резистора.
сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падения на напряжения на светодиоде. Для маломощных светодиодов ток 20 мАм необходимо принимать
Рабочее напряжение (падение на светодиоде)
1,6-1,8
1,8-2,0
2,0-2,2
3,0-3,2
3,0-3,2
3,1-3,2
3,0-3,1
Зная падения на на светодиоде можно вычислить остаток на напряжения на резисторе.
Например. Питающее напряжение V pit = 9 вольт. Мы подключаем 1 белый светодиод падение на нем 3,1 вольт. Напряжение на резисторе будет = 9 — 3,1 = 5,9 Вольта.
Вычисляем сопротивление резистора
R1 = 5.9 / 0.02 = 295Ом.
Берем резистор с близким более высоким сопротивлением 300 ом.
Источник: