Схема механизма переключения передач

Авто

Вернёмся немного к назад и посмотрим что же это за механизм такой, разберём устройство и принципы работы!

Механическая коробка передач (МКПП) представляет собой набор шестерен, которые входят в зацепление в различных сочетаниях, образуя несколько передач или ступеней с различными передаточными числами. Чем больше число передач, тем лучше автомобиль «приспосабливается» к различным условиям движения.

Наименьшая по сравнению с другими типами КПП стоимость и масса;
Высокие КПД, топливная экономичность и динамика разгона;
Простота и отработанность конструкции, а следовательно — высокая надежность;
Не требуют дорогостоящих расходных материалов, просты в обслуживании;
Благодаря жесткой связи двигателя с ведущими колесами, водитель может более эффективно использовать автомобиль при передвижении в гололедицу, по грязи и бездорожью;
МКПП допускает полное разобщение двигателя и трансмиссии, поэтому такой автомобиль легко пускается «с толкача» и может буксироваться на любое расстояние с любой скоростью.

Утомляющее водителя переключение передач, особенно в городском цикле и движении в пробках, необходимость навыка для правильного выбора передачи и плавного переключения передач без рывков;
Ступенчатое изменение передаточного отношения;
Малый ресурс сцепления.
Ступенчатые механические коробки передач выполняются по двум схемам: трехвальные и двухвальные. Трехвальная коробка передач устанавливается, как правило, на заднеприводные автомобили. Двухвальная механическая коробка передач применяется на переднеприводных и заднемоторных легковых автомобилях. Устройство и принцип работы этих коробок передач имеют различия, поэтому они рассмотрены отдельно.

• Трехвальная коробка передач

Как следует из названия, такая коробка имеет три вала: ведущий, промежуточный и ведомый.
Ведущий вал соединяется со сцеплением. На валу имеются шлицы для ведомого диска сцепления. Далее крутящий момент передается через шестерню, находящуюся на валу в жестком зацеплении, на промежуточный вал.
Промежуточный вал расположен параллельно ведущему валу. На валу располагается блок шестерен, находящийся с ним в жестком зацеплении.
Ведомый вал расположен на одной оси с ведущим. Такое расположение осуществляется за счет подшипника на ведущем валу, в который входит ведомый вал. Жёсткой связи они не имеют и вращаются независимо друг от друга. Блок шестерен ведомого вала не имеет закрепления с валом и свободно вращается на нем. Между шестернями ведомого вала располагаются муфты синхронизаторов. Муфты имеют жесткое зацепление с ведомым валом, но могут двигаться по нему в продольном направлении за счет шлицевого соединения. На торцах муфты имеют зубчатые венцы, которые могут входить в соединение с соответствующими зубчатыми венцами шестерен ведомого вала. На современных коробках передач синхронизаторы устанавливаются на всех передачах (кроме заднего хода).
Шестерня ведущего вала, блок шестерен промежуточного и ведомого вала находятся в постоянном зацеплении. При нейтральном положении рычага переключения крутящий момент от двигателя на ведомый вал не передается, а его шестерни свободно вращаются. При перемещении рычага КПП, соответствующая вилка перемещает муфту синхронизатора, который обеспечивает выравнивание (синхронизацию) угловых скоростей шестерни ведомого вала с угловой скоростью самого вала за счет сил трения. После этого, зубчатый венец муфты заходит в зацепление с зубчатым венцом шестерни и обеспечивается блокировка шестерни на ведомом валу. Ведомый вал передает крутящий момент от двигателя на ведущие колеса с заданным передаточным числом. При соединении синхронизатором первичного и вторичного валов (минуя шестерни) образуется прямая передача. Передаточное число прямой передачи равно единице. На прямой передаче шестерни вращаются вхолостую и не изнашиваются, коробка работает с максимальным КПД. Движение задним ходом обеспечивается за счет промежуточной шестерни заднего хода, устанавливаемой на отдельной оси. Шестерни трехвальной коробки передач обычно (кроме первой передачи и передачи заднего хода) делают косозубыми. Такие шестерни обладают повышенной прочностью, более долговечны и бесшумнее в работе, чем прямозубые.
Посмотреть анимированное изображение.

• Двухвальная коробка передач

Ведущий вал, также как и в трехвальной коробке, обеспечивает соединение со сцеплением. На валу жестко закреплен блок шестерен, а не одна шестерня, как в трехвальной коробке. Промежуточный вал отсутствует. Параллельно ведущему валу расположен ведомый вал с блоком шестерен. Шестерни ведомого вала находятся в постоянном зацеплении с шестернями ведущего вала и свободно вращаются на валу. На ведомом валу жестко закреплена ведущая шестерня главной передачи. Между шестернями ведомого вала установлены муфты синхронизаторов.
Принцип работы аналогичен трехвальной коробке. Однако прямой передачи в двухвальной коробке нет. Каждая передача, кроме заднего хода, создается одной парой шестерен, а не двумя, как в трехвальной коробке. Это повышает КПД двухвальной коробки, но не позволяет добиться большого передаточного числа. Поэтому и применяется она только в легковых автомобилях.

• Как работает синхронизатор

Синхронизатор служит для бесшумного переключения передач путем выравнивания угловых скоростей включаемых элементов. Он состоит из ступицы 1, муфты 2, двух блокировочных колец 3, трех сухарей 4, двух проволочных колец 5. Ступица устанавливается на шлицах вторичного вала и жестко фиксируется. На ступице нарезаны наружные зубья и пазы под сухари. Муфта расположена на зубьях ступицы и в среднем положении удерживается сухарями, выступы которых входят во внутреннюю кольцевую канавку муфты. Сухари прижимаются к муфте упругими кольцами (как вариант, вместо колец могут использоваться подпружиненные шарики). Бронзовые блокировочные кольца имеют наружные зубья со скосами и впадины под сухари; ширина впадин несколько больше ширины сухарей. Кольцо может провернуться относительно ступицы на величину разницы ширины паза кольца и ширины сухаря. Для увеличения сил трения на конической поверхности кольца нарезана резьба и выполнены продольные канавки.
Работает синхронизатор следующим образом. При включении передачи вилка переключения перемещает муфту в направлении шестерни включаемой передачи. При перемещении муфты усилие через сухари передается на одно из блокировочных колец, которое вместе с муфтой перемещается относительно ступицы в сторону включаемой шестерни до соприкосновения с ее конической поверхностью. Вследствие разности угловых скоростей включаемой шестерни и ведомого вала на конических поверхностях возникает сила трения, которая поворачивает блокировочное кольцо до упора его в сухари. При этом зубья блокировочного кольца станут напротив зубьев муфты и дальнейшее перемещение муфты становится невозможным. После выравнивания угловых скоростей шестерни и синхронизатора сила, сместившая блокировочное кольцо, исчезает; под действием усилия водителя оно вернется в первоначальное положение, чему способствуют скосы на зубьях муфты и кольца. После этого муфта свободно проходит между зубьями блокировочного кольца и соединяется с зубьями малого венца включаемой шестерни. При этом гребни сухарей выходят из кольцевой проточки муфты, а сухари утапливаются, преодолевая упругую силу кольцевых пружин. Шестерня жестко соединяется со вторичным валом, передача включается. Весь процесс занимает время порядка милисекунд. С помощью одного синхронизатора можно поочередно включать две передачи в коробке.

Читайте также:  Киа икс рей фото

Конструкция механизма переключения передач зависит от конструкции автомобиля. В заднеприводных рычаг располагается непосредственно на корпусе коробки передач. В этом случае весь механизм переключения расположен внутри корпуса коробки и рычаг напрямую воздействует на него. Плюсы такой схемы – простота, более чёткое переключение передач, меньший износ в процессе эксплуатации. Недостаток — такой привод непригоден для использования на большей части переднеприводных и всех заднемоторных автомобилях. В этом случае применяется иная схема механизма переключения: рычаг располагается дистанционно (напольно, на рулевой колонке или на панели приборов) и связан с коробкой передач при помощи расположенных вне ее корпуса тросов либо тяг (называемых обычно «кулисой»). Плюсы такого решения — удобное расположение рычага КПП, отсутствие его вибрации и практически полная свобода в компоновке автомобиля. Однако, дистанционный привод менее долговечен и со временем допускает разбалтывание, что требует его регулировки или замены. Кроме того, чёткость переключения передач с таким механизмом переключения хуже, чем при непосредственном расположении рычага на корпусе КПП.
Несмотря на различия в конструкции привода включения передач, механизм включения в большинстве коробок передач имеет одинаковое устройство. Он состоит из подвижных штоков 1, расположенных в крышке коробки передач, и закрепленных на каждом штоке вилок 2. Вилки своими концами входят в пазы муфт синхронизаторов, а вилка включения заднего хода — в кольцевую проточку шестерни заднего хода. Также в любой коробке передач предусмотрены устройства, предохраняющие от неполного включения, самовыключения передачи и одновременного включения двух передач.
КПП с непосредственным приводом включения передач
При расположении рычага переключения 3 непосредственно на корпусе коробки передач его нижний конец входит в пазы головок подвижных штоков. Поперечное перемещение рычага, находящегося в нейтральном положении, приводит к выбору необходимого штока (передачи), а продольное — вызывает смещение штока, закрепленной на нем вилки и включение требуемой передачи.
Для удержания штока в нейтральном или включенном положении в нем выполнены гнезда, к которым поджимается пружиной шарик фиксатора. Штоки имеют по три гнезда под шарик фиксатора: среднее служит для удержания штока в нейтральном положении, а крайние — для фиксации одной из включенной передач. Шток вилки включения заднего хода имеет два гнезда: одно для фиксации штока в нейтральном положении, другое — во включенном положении передачи заднего хода.
Чтобы исключить одновременное включение двух передач, в приводе имеется замковое устройство. Один из вариантов его конструкции — три блокировочных сухаря 4. Два крайних сухаря установлены в отверстия задней стенки картера, а средний — в отверстии среднего штока. У штоков имеются гнезда для сухарей. При перемещении одного из крайних штоков он выдавливает из своего гнезда сухарь, который, перемещаясь, входит в гнездо среднего штока и одновременно сдвигает два других сухаря, блокируя и второй крайний шток. При перемещении среднего штока, он прижимает два крайних сухаря в гнезда крайних штоков. Тем самым неподвижные штоки оказываются в запертом положении.
КПП с дистанционным приводом включения передач
Если рычаг коробки передач располагается дистанционно, то, как уже упоминалось, он соединяется с коробкой с помощью тросов или тяг 1, которые через шток выбора передач 2 воздействуют на механизм выбора передач 3. На конце штока выбора передач крепится двуплечий рычаг 4, который при перемещении штока поворачивает трехплечий рычаг 5 механизма выбора передач. Трехплечий рычаг перемещает шток выбранной передачи с закрепленной на нем вилкой. Одно плечо трехплечего рычага служит для включения передач переднего хода, другое для включения заднего хода, а на третье плечо действует рычаг штока выбора передач. Блокировочные скобы 6 предназначены для предотвращения одновременного включения двух передач. Механизм включения передач состоит из штоков, вилок и шариковых фиксаторов.

Читайте также:  После охлаждения подвеска поднимется

• Уход и эксплуатация

При эксплуатации коробки передач необходимо следить за уровнем масла в картере и доливать его в случае необходимости. Полная замена масла производится в сроки, указанные в инструкции по эксплуатации автомобиля. При грамотном обращении с рычагом переключения передач и периодической замене масла в картере коробки, она не напоминает о себе практически до конца срока службы автомобиля. Обычно неисправности и поломки в коробке передач появляются в результате грубой работы с рычагом переключения. Если водитель постоянно «дергает» рычаг, то когда-нибудь обязательно выйдут из строя механизм переключения или синхронизаторы, да и сами валы с шестернями. Передачи надо переключать спокойным плавным движением, с небольшой паузой в нейтрали для того, чтобы сработали синхронизаторы.
Основные неисправности коробки передач:
Подтекание масла может быть следствием повреждения уплотнительных прокладок, сальников и ослабления крепления крышек картера;
Шум при работе коробки передач может возникнуть из-за неисправного синхронизатора, износа подшипников, шестерен и шлицевых соединений;
Затрудненное включение передач может происходить из-за поломок деталей механизма переключения, износа синхронизаторов или шестерен;
Самовыключение передач случается из-за неисправности блокировочного устройства, а также при сильном износе шестерен или синхронизаторов.

В механических КПП и ведущих мостах заднеприводных автомобилей применяются трансмиссионные масла (в переднеприводных, как правило, используется моторное масло). Трансмиссионные масла работают в гораздо более легких условиях, чем моторные. Основное требование к ним — способность создавать прочную масляную пленку, выдерживающую большие нагрузки в зоне контакта деталей. Аналогично моторным маслам, трансмиссионные классифицируются по уровню эксплуатационных свойств API и классу вязкости SAE.
Согласно классификации API трансмиссионные масла делятся на пять классов: GL-1, GL-2, GL-3, GL-4, GL-5. Первые три класса применяются в тракторах, сельскохозяйственных машинах и грузовых автомобилях. Масла класса GL-4 предназначены для для механических коробок передач, раздаточных коробок и главных передач с цилиндрическими шестернями, GL-5 – для гипоидных передач. Бытует заблуждение, что масла класса GL-5 выше качеством, чем GL-4. Это не так! У них разные области применения. Масла для гипоидных передач содержат специальные противоизносные и противозадирные присадки, которые разрушительно действуют на цветные металлы. Поэтому если залить такое масло в коробку передач, оно неизбежно выведет из строя ее синхронизаторы.
Вязкость по SAE определяет температурный диапазон использования масла. Маркировка трансмиссионных масел аналогична маркировке моторных масел. Классификация содержит четыре зимних класса и пять летних. На практике сезоные масла применяют очень редко: срок их службы довольно велик, и проводить два раза в год замену не выходившего свой ресурс продукта экономически невыгодно. Поэтому в подавляющем большинстве случаев используются всесезонные масла. Самые распространенные для умеренного климата масла с верхним индексом вязкости 90. При выборе масла по низкотемпературному индексу ориентируются на следующие рекомендации: 75W-90 для суровых зим, 80W-90 для умеренных температур и 85W-90 для теплых зим.
Трансмиссионные масла выпускают на минеральной или синтетической основе.

Учебный вопрос № 3

Выводы по вопросу.

Механизм переключения (рис. 3) передач размещен в верхней крышке коробки передач. Каретки синхронизаторов и муфта включения первой передачи и передачи заднего хода перемещаются рычагом, установленным в кабине, через дистанционный привод, штоки и вилки. Вилки закреплены установочными винтами на штоках, перемещающихся в отверстиях верхней крышки.

Механизм переключения передач состоит из (рис. 4): трех штоков; трех вилок переключения; двух головок штоков; трех фиксаторов с шариками; предохранителя включения первой передачи и передачи заднего хода; замка штоков.

Сверху на крышке механизма переключения передач установлена опора рычага со штоком.

Рис. 3. Механизм переключения передач автомобиля Урал (СЛАЙД № 13)

Рис. 4. Устройство механизма переключения передач Камаз (СЛАЙД № 14)

рычаг переключения передач (2); ползуна переключения передач (39, 40, 41); 3 вилки (32, 33, 37); 3 иксатора (30, 31); замковое устройство (четыре стальных шарика и штифт) (11, 12, 13); предохранитель случайного включения первой передачи и заднего хода (14,15,16).

Привод управления механизмом переключения передач показан на рис. 5.

Рис. 5. Привод управления механизмом переключения передач Камаз (СЛАЙД № 15)

1 – рукоятка рычага переключения передач; 2 – опора рычага переключения передач; 3 – тяга; 4 – технологический стержень; 5 – рычаг; 6 – кронштейн реактивной тяги; 7 – тяга реактивная; 8 – кожух защитный; 9 – хвостовик; 10, 14, 15 – гайка.

Привод состоит из качающегося рычага 1 переключения передач, опоры 2 рычага переключения передач, укрепленной на переднем торце блока цилиндров двигателя, тяги 3 управления, хвостовика 9, рычага 5, регулировочной тяги 7. Сферические опоры тяги 3 размещены в расточке кронштейна опоры рычага переключения передач.

Читайте также:  Нива урбан характеристика двигателя

Выводы по вопросу.

Не нашли то, что искали? Воспользуйтесь поиском:

Способ переключения передач определяется назначением станка и в основном зависит от частоты переключения, необходимости его автоматизации и дистанционного управления приводом [10].

Системы ручного переключения пока еще применяют в универсальных станках общего назначения; основные их достоинства – простота и низкая стоимость. Как правило, используют однорукояточные селективные (избирательные) системы управления, что способствует удобству управления и снижает время на переключение. При этом нет необходимости проходить через ненужные промежуточные положения зубчатых блоков. Конструкция селективной системы управления фрезерного станка представлена на рис. 6.13.

Рис. 6.13. Механизм управления главным движением фрезерного станка

В отдельном корпусе 1, монтируемом на передней стенке коробки скоростей, расположен указатель 2 частот вращения шпинделя. Поворачивая этот указатель, через установленные на валиках 4 и 6 конические колеса 5 и 7 можно поворачивать диск переключения 16. В диске переключения имеются концентрично расположенные отверстия определенного диаметра, которые при фиксированном повороте диска устанавливаются против каждой пары толкателей 14 и 15, предназначенных для переключения одного блока. Число пар толкателей соответствует числу перемещаемых блоков зубчатых колес или кулачковых муфт. На рисунке показан только один блок 11. Толкатели связаны между собой шестеренно-реечной передачей 8, 9, 10, причем на одном из толкателей закреплена вилка 12, взаимодействующая с блоком. Правые концы толкателей выполнены ступенчатыми для обеспечения двух или трех положений блока. Рукояткой 18 через сектор-рейку 20 перемещают вилку управления диском 17. Между рейками шестеренно-реечной передачи и толкателем установлены пружины 13, которые сжимаются при совпадении зубьев блока и шестерни по торцам. Положение рукоятки 18 и указателя 2 фиксируется соответственно фиксаторами 19 и 3.

В начале переключения рукояткой 18 отводят диск 16 в правое положение. Затем указателем 2 поворачивают диск 16, угловое положение которого соответствует заданной частоте вращения шпинделя. Рукояткой 18 диск перемещают влево. Если против одного из толкателей каждой пары отсутствует отверстие (против другого толкателя пары в этот момент находится отверстие), то толкатель или непосредственно, или через реечную передачу перемещает блок в нужное положение. Если требуется перемещать тройной блок, то толкатели блока на левом конце имеют две ступени.

Аналогично устроен и механизм управления движением подачи. В тяжелых фрезерных станках механизм переключения имеет гидравлический или электрический привод.

Механизм управления главным движением фрезерного станка с гидравлическим приводом приведен на рис. 6.14. Блоки шестерен 1, 2, 19, 22 перемещаются соответственно вилками 12, 6, 18, 23, которые закреплены на штоках 11, 5, 17, 21 гидроцилиндров 14, 3, 16, 20. Штоки 5 и 11 в отличие от штоков 17 и 21 выполнены ступенчатыми. В гидроцилиндрах 14, 3, 9, 8 установлены втулки 13, 10, 7, 4. Это сделано для того, чтобы обеспечить нейтральное положение блоков 1 и 2 при блокировке и среднее положение при применении тройного блока. Жидкость насосом 24 подается к поворотному распределителю 15 и от него в требуемые полости гидроцилиндров; при этом противоположные полости соединяют со сливом. Для установления блоков 1 и 2 в среднем положении жидкость поступает в противоположные полости одновременно.

В универсальных станках применяют и электрогидравлические механизмы преселективного управления. Под преселективным управлением понимают такое управление, при котором необходимые режимы обработки на следующую операцию можно установить во время работы станка на предыдущей, что сокращает вспомогательное время, связанное с управлением станком.

Рис. 6.14. Механизм управления главным движением

В автоматических станках переключение скоростей часто осуществляется с помощью электромагнитных фрикционных или зубчатых муфт. Применение электромагнитных фрикционных муфт позволяет переключать скорости в процессе работы станка, однако уменьшает КПД станка, так как все зубчатые передачи находятся в зацеплении и существует повышенное трение в дисках.

Автоматические коробки скоростей с электромуфтами (АКС) выпускают централизованно с 9, 12 и 18 ступенями семи габаритов, рассчитанные на мощности от 1,5 до 55 кВт. Так как электромагнитные муфты нежелательно встраивать в шпиндельные бабки станков, то в станках с числовым управлением в приводах с двигателем постоянного тока применяют зубчатые передачи, переключаемые автоматически с помощью индивидуальных электромеханических (реже гидравлических) приводов. Схемы таких приводов даны на рис. 6.15. В автоматических станках с большим числом механических передач возможны системы управления, выполненные на базе соответствующих селективных или преселективных систем [10].

В развитии привода главного движения можно отметить следующие основные тенденции. Прежде всего – агрегатирование привода, создание унифицированных коробок скоростей. Важным является сокращение количества органов ручного управления и разработка механизмов однорукояточного управления, в том числе дистанционного. Расширяется применение электромагнитных муфт для переключения коробок, использование механизированных и автоматизированных процессов управления.

Рис. 6.15. Схемы механизмов переключения передач в станках с ЧПУ:

а– с реечной передачей;б– с передачей винт-гайка;в– с гидроцилиндром