Обороты максимального крутящего момента

Авто

Содержание

  • Что такое крутящий момент?
  • Что такое крутящий момент
  • Мощность двигателя
  • Что важнее – мощность или крутящий момент?
  • Особенности малооборотистых и высокооборотистых двигателей
  • Эластичность двигателя
    • Рекомендуем посмотреть:

Как-то давно интересовался разницей мощности и крутящего момента и что важнее для разгона, а что для максимальной скорости и вот снова наткнулся на эту хорошую и подробную(на мой взгляд) статейку из журнала Автоцентр

Что интересует людей, изучающих технические характеристики того или иного автомобиля? В первую очередь мощность, затем расход топлива и максимальная скорость. О крутящем моменте вспоминают редко. А зря.

Тяговые возможности моторов еще с момента рождения самоходных колясок принято оценивать по мощности, которая выражается в лошадиных силах. Из-за отсутствия в те далекие времена методики расчета и определения мощности до 1906/1907 годов эта характеристика двигателя имела не вполне четкое обозначение – она показывала приблизительную мощность – «от» и «до», например, от 15 до 20 л.с.

С 1907 года этот неточный показатель мощности разделили на два значения, например, 6/22 л.с. В первую цифру заложили значение налоговой ставки, а во вторую – мощность. Введенная налоговая лошадиная сила соответствовала определенному значению рабочего объема двигателя: 261,8 куб. см для четырехтактных моторов и 174,5 куб. см – для двухтактных. Появление такого способа установления налоговых ставок было обусловлено зависимостью рабочего объема двигателя от количества вырабатываемой им энергии и потребления топлива. Обозначать мощность в киловаттах (кВт), согласно международной системе измерений СИ, начали значительно позже.

На самом деле «мощность» отражает тяговые возможности двигателя лишь косвенно. С этим согласятся те, кто ездил на автомобилях-одноклассниках с двигателями приблизительно равной мощности и объема. Они наверняка заметили, что одни автомобили достаточно резвы начиная с низких оборотов, другие любят только высокие обороты, а на малых ведут себя достаточно вяло.

Много вопросов возникает у тех, кто после легковушки с 110-120-сильным бензиновым мотором пересел за руль такой же машины, но с дизельным двигателем мощностью всего 70-80 л.с. По динамике разгона, не используя спортивный режим (высокие обороты), на первый взгляд маломощный «дизель» с легкостью обойдет своего бензинового брата. В чем же здесь дело?

Вся эта неразбериха вызвана тем, что в каждом случае такая величина как сила тяги (FT, Н), приложенная к ведущим колесам, будет разной. Объяснение этому легко найти из формулы: FT=Мкр•i•h/r, где Мкр-крутящий момент двигателя, i-передаточное число трансмиссии, h – КПД трансмиссии (при продольном расположении двигателя h=0,88-0,92, при поперечном – h=0,91-0,95), r – радиус качения колеса. Из формулы видно, что чем больше крутящий момент двигателя и передаточное число, и чем меньше потери в трансмиссии (т.е. чем выше ее КПД) и радиус ведущих колес, тем больше сила тяги. Радиус колес, передаточное число и КПД трансмиссии у автомобилей-одноклассников очень схожи, поэтому на силу тяги они влияют не в такой степени как крутящий момент двигателя.

Если в формулу подставить реальные цифры, то сила тяги на каждом ведущем колесе, например, автомобиля Volkswagen Golf IV с 75-сильным мотором, развивающим крутящий момент 128 Н•м, будет равна 441 Н или 45 кГ•с. Правда, эти значения действительны, когда частота вращения коленчатого вала двигателя (3300 об/мин) соответствует максимальному крутящему моменту.

Что такое крутящий момент

Разобраться, что такое крутящий момент, можно на простом примере. Возьмем палку и один ее конец зажмем в тисках. Если надавить на другой конец палки, на нее начнет воздействовать крутящий момент (Мкр). Он равен силе, приложенной к рычагу, умноженной на длину плеча силы. В цифрах это выглядит так: если на рычаг длиной один метр подвесить 10-килограммовый груз, появится крутящий момент величиной 10 кг•м. В общепринятой системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м. Из этого следует, что получить больший крутящий момент можно двумя путями – увеличив длину рычага или вес груза.

В двигателе внутреннего сгорания нет палок и грузов, а вместо них имеется кривошипно-шатунный механизм с поршнями. Крутящий момент здесь получают благодаря сгоранию горючей смеси, которая при этом расширяется и толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (удвоенное значение радиуса кривошипа).

Примерный расчет крутящего момента двигателя выглядит так. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Чтобы этот показатель стал больше, радиус кривошипа следует увеличить или сделать так, чтобы поршень давил на шатунную шейку с большей силой. Увеличивать радиус кривошипа до бесконечности нельзя, так как размер двигателя тоже придется увеличивать в ширину и в высоту. Возрастают и силы инерции, требующие упрочения конструкции или уменьшения максимальных оборотов. Появляются при этом и другие негативные факторы. В такой ситуации у конструкторов двигателей остался только один выход – увеличить силу, с которой поршень приводит в движение коленчатый вал. Для этого топливно-воздушную смесь в камере сгорания необходимо сжечь более качественно и большее количество. Достигают этого путем увеличения рабочего объема, диаметра цилиндров и их количества, а также улучшения степени наполнения цилиндров топливно-воздушной смесью, оптимизации процесса сгорания, повышения степени сжатия. Подтверждает это и расчетная формула крутящего момента: Мкр=VH •pe / 0,12566 (для четырехтактного двигателя), где VH – рабочий объем двигателя (л), pe – среднее эффективное давление в камере сгорания (бар).

Читайте также:  Как хранят шины на дисках

Получить на коленчатом валу двигателя максимальный крутящий момент удается не на всех оборотах. У разных двигателей пик максимального крутящего момента достигается на различных режимах – у одних он больше на малых оборотах (в диапазоне 1800-3000 об/мин), у других – на более высоких (в диапазоне 3000-4500 об/мин). Объясняется это тем, что в зависимости от конструкции впускного тракта и фаз газораспределения эффективное наполнение цилиндров топливно-воздушной смесью происходит только при определенных оборотах.

Большим крутящим моментом обладают многоцилиндровые двигатели, моторы с турбо- и механическим наддувом. А чемпионами по величине крутящего момента являются «дизели». Многие из них обеспечивают автомобилю высокую динамику уже при 800-1000 об/мин. Если же стать обладателем «дизеля», нет возможности, то подбирать машину лучше с двигателем, у которого максимальный крутящий момент развивается при более низких оборотах. Такой автомобиль легче разгонять. В противном случае двигатель придется «насиловать» высокими оборотами, при которых и расход топлива выше и детали изнашиваются более интенсивно.

Те, кто следит за тенденциями развития автомобилестроения, могли заметить, что создатели двигателей стремятся «выровнять» кривую крутящего момента, т.е. сделать его практически одинаковым во всем диапазоне оборотов. Делается это для того, чтобы исключить провалы на режимах, когда величина крутящего момента еще или уже не позволяет передать на колеса большую силу тяги.

Один из таких моторов – 2,7-литровый V-образный шестицилиндровый турбированный двигатель Audi. Этот 250-сильный двигатель развивает огромный крутящий момент 350 Н•м в широком диапазоне оборотов – от 1800 до 4500. Другой подобный, хотя и менее мощный двигатель предлагает концерн Volkswagen. Его 1,8-литровый 180-сильный турбированный мотор развивает крутящий момент 228 Н•м в диапазоне оборотов от 2000 до 5000. Ездить на машинах с такими двигателями сплошное удовольствие – независимо от оборотов при нажатии на педаль «газа» автомобиль одинаково динамичен (приемист) и не только позволяет любителям спортивной езды полностью реализовать свои желания, но и при спокойной езде способствует уверенным обгонам, перестроениям и движению при полной загрузке.

Повышение и «выравнивание» крутящего момента в современных двигателях обеспечивают различными путями: устанавливают по три, четыре и даже пять клапанов на цилиндр, механизмы изменений фаз газораспределения, впускные тракты делают с изменяемой длиной, крыльчатки турбин делают керамическими и регулируемыми с изменяемым углом наклона лопаток и т.д. Вся эта модернизация направлена на совершенствование процессов наполнения цилиндров свежим зарядом. Наибольшего результата в этом деле добились инженеры SAAB. В свой пока еще экспериментальный двигатель SAAB Variable Compression объемом всего 1,6 л они умудрились заложить мощность, равную 225 л.с. и крутящий момент 305 Н•м. Добиться столь высоких показателей шведским моторостроителям удалось благодаря возможности изменения объема камеры сгорания и соответственно степени сжатия (от 14:1 до 8:1) в зависимости от режимов работы двигателя. Получению этих характеристик способствует и система наддува воздуха под высоким давлением – 2,8 атм., четыре клапана на цилиндр и система промежуточного охлаждения воздуха (Intercooler) (см. «Автоцентр» №14 ‘2000).

А как же обстоит дело с таким популярным показателем как мощность? Здесь ситуация складывается следующим образом. Наверное, многие замечали, что рядом с указываемой в характеристике мощностью всегда стоит значение оборотов коленчатого вала, при которых двигатель развивает эту мощность. Как правило, эти обороты приближены к максимальным. Во всех других режимах двигатель выдает только некоторую часть указанной мощности.

Почему так происходит, хорошо видно из формулы для вычисления мощности двигателя (кВт) – N=Mкрn/9549, где Mкр – средний крутящий момент двигателя (Н.м), n – обороты коленчатого вала двигателя (об/мин). Из формулы следует, что на значение мощности влияют величины крутящего момента и обороты двигателя. Но так как численные значения оборотов двигателя в десятки раз превышают величину крутящего момента (например, 3000 об/мин и 120 Н.м), то и на изменение мощности они будут влиять в большей степени. Это еще одно доказательство того, что силу мотора мощность отражает косвенно.

Вышесказанное подтверждается следующим примером. Когда мы едем по трассе с постоянной скоростью, приложенная к ведущим колесам автомобиля сила тяги расходуется на преодоление всевозможных сил сопротивления движению (аэродинамическую, качению колес и т.д.) и трение в различных механизмах. Но когда возникает потребность резко ускориться для обгона, сделать это удается не всегда, так как появляется необходимость преодолевать появившиеся силы инерции. В этом случае говорят, что у двигателя не хватает мощности. Но мощность здесь ни при чем, так как со всеми силами сопротивления движению борется сила тяги, зависящая от величины крутящего момента двигателя. Чтобы увеличить силу тяги, необходим запас крутящего момента. Величина этого запаса и влияет на то, как быстро сможет ускориться автомобиль.

Для получения более резкого ускорения можно, конечно, и переключиться на пониженную передачу, когда передаточное число трансмиссии станет большим и сила тяги на колесах увеличится. Однако при этом есть опасность «перекрутить» двигатель, да и дальнейшего ускорения мы можем не получить, так как режим работы двигателя может быть приближен к экстремальному. Аналогичная ситуация складывается и на подъемах, когда запас крутящего момента одних двигателей позволяет продолжить движение, а у других его отсутствие требует перехода на пониженную передачу.

Вывод отсюда напрашивается следующий: какой бы мощностью ни обладал двигатель, а способность разгонять автомобиль и «вытаскивать» его на подъем полностью возложена на крутящий момент. Возникает вполне справедливый вопрос: что же означает мощность? Это универсальный показатель, в который заложили целый ряд характеристик автомобильного двигателя – энергоемкость, потребление топлива, тяговая способность и т.д.

Читайте также:  Подключение автомагнитолы схема подключения

Несмотря на то, что гужевой транспорт давно «канул в Лету» и «л. с.» является персоной нон-грата в международной системе классификации, «лошадиная» единица измерения мощности продолжает пользоваться спросом. Причем не только у простого люда, но и на государственном уровне. Для этого достаточно взглянуть на квитанцию об уплате транспортного налога.

Между тем, появившаяся в период промышленной революции «л. с.» весьма условна. А все потому, что она определяет относительный уровень производительности среднестатистической лошади путем определения усилий, необходимых для подъема 75-килограммового груза на один метр за одну секунду. Новая единица измерения, взятая на вооружение фабрикантами для оценки превосходства стационарных механизмов над животными, со временем перекочевала в мир подвижного состава.

Позже шотландский инженер Джеймс Уатт ввел в обращение официальную единицу измерения мощности своего имени – «Вт», которую для удобства использования укрупнили до «кВт». Ватт, синхронизированный с л. с. в соотношении 1 кВт = 1,36 л. с., так и не добился всеобщей любви, оставив пальму первенства конской силе. Однако мощность мощностью, но, как говорится, двигает машину не она, а крутящий момент, измеряемый в ньютон-метрах (Н∙м).

Что такое крутящий момент?

У многих автомобилистов нет адекватного представления о том, что это за «зверь». О нем, впрочем, как и о мощности, бытует расхожее мнение: чем больше, тем лучше. По сути, это тесно связанные характеристики. Мощность в ваттах не что иное, как крутящий момент в ньютон-метрах, умноженный на число оборотов и на 0,1047. Другими словами, мощность демонстрирует количество работы, выполняемой двигателем за определенный промежуток времени, а крутящий момент отражает способность силового агрегата эту работу совершить. Если, скажем, автомобиль завяз в глинистом грунте и обездвижился, то производимая им мощность будет равняться нулю. Ведь работа не совершается. А вот момент, хотя его и не хватает для движения, присутствует. Крутящий момент без мощности существовать может, а мощность без момента — нет.

Главным достижением работающего мотора при превращении тепловой энергии в механическую является момент, или тяга. Высокие моментные значения характерны для дизельных двигателей, конструктивная особенность которых – большой (больше диаметра цилиндра) ход поршня. Большой крутящий момент у дизеля нивелируется относительно низким допустимым числом оборотов, которые ограничивают для увеличения ресурса. Высокооборотистым бензиновым моторам свойствен «крен» в сторону мощности, ведь их детали отличаются меньшим весом. И степень сжатия тоже ниже. Правда, современные силовые агрегаты – и дизельные, и бензиновые – совершенствуясь, становятся ближе и конструктивно, и по показателям. Но пока банальное правило рычага сохраняется: выигрывая в силе, проигрываешь в скорости. И, соответственно, в расстоянии.

Лучшие черты двигателя определяются совокупностью оптимальных значений мощности и тяги. Чем раньше наступает максимум крутящего момента и чем позже пик мощности, тем шире диапазон возможностей силового агрегата. Близкие к оптимальным характеристики имеют электрические двигатели. Они располагают тягой, близкой к максимальной, практически с начала движения. В то же время значение мощности прогрессивно возрастает. Существенным фактором в вопросах определения мощности и крутящего момента являются обороты двигателя. Чем они выше, тем большую мощность можно снять.

В этом контексте уместно упомянуть о гоночных моторах. Из-за относительно скромных объемов они не блещут умопомрачительным крутящим моментом. Однако способны раскручиваться до 15–20 тыс. оборотов в минуту (мин -1 ), что позволяет им выдавать супермощность. Так, если рядовой силовой агрегат при 4000 об/мин генерирует 250 Н∙м и порядка 140 л. с., то при 18 000 мин -1 он мог бы выдать в районе 640 л. с.

К сожалению, повышать частоту вращения довольно сложно. Мешают силы инерции, нагрузки, трение. Скажем, если раскрутить мотор от 6000 до 12 000 мин -1 , то силы инерции возрастут вчетверо, что потенциально грозит опасностью перекрутить мотор. Повысить величину крутящего момента можно с помощью турбонаддува, но в этом случае негативную роль начинают играть тепловые нагрузки.

Принцип максимальной отдачи мощности красноречиво иллюстрируют моторы болидов «Формулы-1», имеющие весьма скромный объем (1,6 литра) и относительно невысокий показатель тяги. Но за счет наддува и способности раскручиваться до высоких оборотов выдают порядка 600 л. с. Плюс к тому, конструкция у «Ф1» – гибридная, и электродвигатель, дополняющий основной мотор, при необходимости добавляет еще 160 «лошадей».

Важной характеристикой, отражающей возможности мотора, является диапазон оборотов, при котором доступна максимальная тяга. Но еще важнее эластичность двигателя, то есть способность набирать обороты под нагрузкой. Другими словами, это соотношение между числами оборотов для максимальной мощности и оборотов для максимального крутящего момента. Оно определяет возможность снижения и увеличения скорости за счет работы педалью газа без переключения передач. Или возможность езды на высоких передачах с малой скоростью. Эластичность, к примеру, выражается способностью автомобиля разгоняться на пятой передаче с 80 до 120 км/ч на пятой. Чем меньше времени займет этот разгон, тем эластичнее двигатель. Из двух двигателей одинакового объема и мощности предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также облегчит работу трансмиссии.

А если все-таки задаться вопросом о том, что важнее – крутящий момент или мощность, деля мир на черное и белое, ответ будет предельно прост: так как это зависимые величины, важно и то и другое.

Читайте также:  Камеры на страховку ульяновск

Определение «крутящий момент силового агрегата» слышали все, но немногие в полной мере понимают, что это за характеристика. При покупке автомобиля все обращают внимание на «лошадиные силы» под капотом и число передач, упуская из вида один из самых важных показателей. Максимальная скорость, способность ускоряться и мощность зависит не от одних «лошадок», но и от свойства двигателя развивать определенное крутящее усилие.

Что такое крутящий момент

Крутящий момент представляет собой качественный показатель, выражающий силу вращения коленвала, и рассчитывается произведением силы, давящей на поршень, на плечо (расстояние между центром вращения оси коленчатого вала до места крепления поршня к шатуну). Измеряется в количестве ньютонов на метр (Нм).

Сила крутящего момента зависит от давления на поршень при сгорании газов, рабочего объема камеры сгорания и двигателя в целом, степени сжатия горючей смеси в камере сгорания.

Традиционно более высокий крутящий момент у дизелей, это объясняется степенью сжатия, превосходящей бензиновые двигатели практически вдвое.

Сильный крутящий момент дает автомобилю повышенную динамику набора скорости даже при низких оборотах, и заметно повышает тяговые свойства двигателя. Максимальных значений данная характеристика достигает при определенной частоте вращения коленвала, причем у дизелей этот показатель ниже, чем у бензиновых.

Мощность двигателя

В конкретных описаниях силовых характеристик двигателей вместе с указанием мощности в обязательном порядке приводят значение крутящего момента. Само понятие мощности – это числовое выражение физической величины, которая характеризует работу, проделанную силовым агрегатом за единицу времени. Другими словами, это показатель способности автомобиля с постоянной массой быстро преодолевать определенное расстояние. То есть, чем выше мощность, тем с большей скоростью движется транспортное средство при неизменной массе.

Мощность двигателя выражается в количестве выработанной им энергии за единицу времени. Ее принято измерять в ваттах (киловаттах) или лошадиных силах. Но «лошадиная сила» — это не метрическая единица измерения, и она равна 735,5 Вт, или 1 кВт=1,36 л.с.

Что важнее – мощность или крутящий момент?

При сравнении двух основных характеристик двигателя, становятся ясны следующие моменты:

  • Крутящий момент – главная характеристика силового агрегата;
  • Мощность – вторичная характеристика, являющаяся производной крутящего момента;
  • Мощность двигателя прямо зависит от крутящего момента, что можно выразить формулой: Р=M*n, где

Р – мощность, М – крут. момент, n – кол-во оборотов вала в минуту;

  • Мощность двигателя находится в зависимости от его частоты вращения: с ростом числа оборотов растет и его мощность (до определенного предела);
  • При увеличении числа оборотов растет и крутящий момент, но при достижении максимального значения (при определенном показателе частоты вращения), показатель снижается даже при дальнейшем его увеличении.

На основе сравнительной оценки можно сделать выводы:

  • При оценке рабочих характеристик силового агрегата и эксплуатационных свойств автомобиля характеристика крутящего момента более приоритетна, чем мощность;
  • Среди сходных двигателей по рабочим и конструктивным параметрам более предпочтительны те, где выше крутящий момент;
  • Наилучшая динамика разгона транспортного средства и оптимальная тяга двигателя будет в определенном промежутке частоты вращения вала, которую нужно поддерживать при движении.

Особенности малооборотистых и высокооборотистых двигателей

Увидев достаточно большое значение мощности двигателя, многие люди считают, что это хорошо, при этом следует обратить внимание на значение оборотов двигателя при максимальном крутящем моменте. Проще говоря если двигатель способен развить максимальную мощность 90 л.с. при оборотах 5 тыс., а тахометр показывает всего 2,5, то в этот момент используется всего половина максимальной мощности.

Также при перемещении с большой скоростью по шоссе на последней передаче при ощутимом уклоне вверх, мощности двигателя может быть недостаточно. Для этого производится переключение на пониженную передачу, чтобы выжать из двигателя большую мощность. В этом случае крутящий момент служит для повышения мощности и активизирует силы мотора для преодоления препятствия.

На бензиновых двигателях пиковый крутящий момент в зависимости от марки достигается при 3500-6000 об/мин. У дизелей этот показатель наступает при 3-4 тыс., следовательно, они обладают лучшей динамикой разгона, но проигрывают бензиновым по максимальной мощности. Поэтому самые мощные и быстрые автомобили оснащают исключительно бензиновым силовым агрегатом на высокооктановом бензине.

Подобная закономерность наблюдается и при сравнении низкооборотистого и высокооборотистого двигателя, работающего на одинаковом топливе. При одинаковом рабочем объеме менее высокооборотистый будет показывать лучшие разгонные и тяговые характеристики, а более высокооборотистый – лучшие скоростные и динамические показатели. При этом имеет значение схожесть параметров трансмиссии – если передаточные соотношения не одинаковы, сравнивать двигатели бессмысленно.

Эластичность двигателя

Данная характеристика представляет собой соотношение количества оборотов при максимальной мощности двигателя к числу оборотов при максимальном крутящем моменте. Характеристика лучше, когда обороты крутящего момента значительно меньше в сравнении с оборотами максимальной мощности. Это позволяет повышать и снижать скорость движения на одной передаче в широком диапазоне.

На практике оценить эластичность двигателя можно при разгоне с 4 передачи от 60 до 100 км/ч. Чем выше эластичность двигателя, тем разгон происходит за меньшее время. Также при высокой эластичности ниже шум работы мотора, меньше расход топлива, и ниже износ коробки передач за счет меньшего числа манипуляций с переключениями.

Источник: kalina-2.ru