Содержание
- Механический нагнетатель: в чём суть этого способа наддува?
- Виды нагнетателей: кто есть кто
- Не всякий наддув одинаково полезен: плюсы и минусы
- Содержание
- Нагнетатель как элемент агрегатного наддува [ править | править код ]
-
- Применение нагнетателя и его функции [ править | править код ]
- Отсутствие нагнетателя в составе ГТД [ править | править код ]
- Типы нагнетателей по их энергетическому приводу [ править | править код ]
- Смысл терминов «нагнетатель» и «компрессор» [ править | править код ]
-
- Турбонагнетатель [ править | править код ]
- Приводной нагнетатель [ править | править код ]
-
- Специфика применения на автомобильных моторах [ править | править код ]
- Специфика применения на двухтактных моторах [ править | править код ]
-
- Электронагнетатель [ править | править код ]
- Конструкция и принцип работы механического наддува
- Устройство механического наддува
- Типы привода механического наддува
- Виды механических компрессоров
- Преимущества и недостатки схемы с механическим нагнетателем
- Рекомендуем посмотреть:
В наше время двигатели внутреннего сгорания, имеющие механический нагнетатель воздуха, серийно почти не производятся. Они уступили место компактным турбокомпрессорам и стали уделом заядлых тюнеров и фирм, которые чтят традиции высокопроизводительного моторостроения. Но действительно ли системы механического наддува достойны забвения?
Механический нагнетатель: в чём суть этого способа наддува?
Для начала необходимо отметить, что турбокомпрессоры и суперчарджеры (supercharger – так на западе называют механический нагнетатель) – это одного поля ягоды. Оба узла выполняют одну и ту же функцию – подача воздуха под давлением во впускной коллектор мотора, что увеличивает объём топливно-воздушной смеси в цилиндрах и, как результат, повышает мощность силового агрегата. Причём повышается она прилично.
В чём же различия? Принципиальные различия кроются в типе привода механизмов. В случае с турбинами – это энергия выхлопных газов, а вот суперчарджеры приводятся в движение при помощи механического соединения с коленвалом двигателя.
Кстати, именно механический нагнетатель стоял у истоков наддувных моторов. Ещё в далёком 1885 году немецкий инженер по имени Готтлиб Даймлер получил патент на эти устройства, а на серийные авто они начали устанавливаться с 1900 года.
Несмотря на это, в отечественном автопроме они практически не прижились. На гражданских машинах их вовсе не было, увидеть, например, механический нагнетатель на ваз в штатной комплектации невозможно. Встретить суперчарджеры у нас можно, разве что, на некоторых моделях грузовой и специальной техники с двигателями Д100, ЯАЗ-204 и аналогичных.
Виды нагнетателей: кто есть кто
Пришло время разобраться с разновидностями суперчарджеров, и причинами их невысокой популярности у автопроизводителей. Для этого мы попытаемся вспомнить все плюсы и минусы механического нагнетателя воздуха для автомобиля.
Под капотами автомобилей можно встретить такие виды нагнетателей:
- кулачковый (больше известен в мире как Roots);
- винтовой (также именуемый Lysholm);
- центробежный.
История механического нагнетания воздуха в двигатели началась именно с кулачковых устройств. Представляет собой этот агрегат два ротора с кулачками, вращающимися навстречу друг другу. Кулачки имеют специальную форму, благодаря которой наиболее эффективно происходит процесс нагнетания давления.
Кстати, по аналогичному принципу устроены шестерённые масляные насосы. Считается, что нагнетатели Roots отлично работают даже на малых оборотах мотора – давление воздуха повышается очень быстро. Но у этого достоинства есть и обратная сторона.
Дело в том, что на высоких оборотах воздуха может оказаться слишком много, поэтому они оборудуются регуляторами давления, которые при необходимости стравливают излишки.
Схожую конструкцию имеют нагнетатели Lysholm. Их основа – два ротора-шнека конической формы, причём выемки одного совпадают с выступами другого. Воздух, захватывается этими элементами и сжимается при их вращении. Такие варианты встречаются реже кулачковых, так как их цена выше из-за сложности изготовления.
Центробежные нагнетатели по своему конструктиву очень напоминают турбокомпрессоры. Их ключевым элементом выступает крыльчатка, которая, вращаясь на высоких оборотах, разгоняет воздух.
Кстати, появились они примерно в одно и то же время, что и кулачковые. Неоспоримым преимуществом центробежных суперчарджеров является их компактность и дешевизна. Благодаря этим факторам, среди любителей тюнинга и тех, кто устанавливает механические нагнетатели своими руками, они пользуются очень широким спросом.
Из недостатков – сильная зависимость эффективности от частоты вращения коленвала двигателя.
Не всякий наддув одинаково полезен: плюсы и минусы
Итак, чем же глобально уступает механический нагнетатель турбокомпрессору? Проблема лежит в самой сути суперчарджеров, в их приводе. Как мы уже говорили выше, они имеют непосредственную связь с коленчатым валом мотора, а это значит, что нагнетатели потребляют часть его мощности.
Так, к примеру, такие затраты могут достигать до 30% полезной работы двигателя, хотя и прирост от наддува тоже немаленький – до 50%. Помимо этого, данные механизмы громоздкие и достаточно шумные, из-за чего не все автопроизводители хотят возиться с установкой дополнительных демпферов и звукоизоляции.
Среди однозначных преимуществ нагнетателей можно выделить их работу уже при минимальных оборотах мотора, а присущая турбокомпрессорам турбояма (запаздывание роста мощности) у наших сегодняшних героев статьи отсутствует напрочь.
В дополнение к этому, суперчарджеры легки в установке, что открывает интересные возможности для людей, которые хотят повысить прыть своих автомобилей.
Следите за публикациями, подписывайтесь на блог и изучайте, изучайте, изучайте!
Нагнетатель — механический агрегат, опционально применяемый на поршневых и роторно-поршневых двигателях внутреннего сгорания (далее — ДВС), работающий за счёт того или иного вида энергии, получаемой в процессе работы самого ДВС, и осуществляющий наддув, то есть принудительное нагнетание воздуха в ДВС с целью его всережимной форсировки или (в отдельных случаях) продувки.
Содержание
Нагнетатель как элемент агрегатного наддува [ править | править код ]
Применение нагнетателя и его функции [ править | править код ]
Нагнетатель может применяться на поршневых и роторно-поршневых ДВС, работающих по любому термодинамическому циклу и с любым числом тактов. Для большинства типов подобных ДВС нагнетатель является опциональным элементом конструкции, не влияющим на принципиальную возможность работы самого ДВС. Основная задача нагнетателя здесь — наддув с целью повышения мощности. Под наддувом подразумевается в первую очередь принудительное нагнетание воздуха в ДВС с давлением выше текущего уровня атмосферного, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, в свою очередь, согласно правилу стехиометрической горючей смеси для конкретного типа двигателя, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) на любой сравнимой с безнаддувным двигателем частоте вращения коленвала/ротора. В рамках этой задачи наддув с помощью нагнетателя есть лишь один из возможных методов форсировки и/или повышения КПД, и наличие или отсутствие нагнетателя определяется лишь целями и бюджетом разработчиков конкретного мотора. Исключением из этого правила является только некоторые типы двухтактных поршневых ДВС, где нагнетатель в первую очередь выполняет задачу по принудительной продувке цилиндров на стыке двух рабочих тактов и присутствует во впускной системе такого ДВС практически всегда.
Читайте также: Шевроле нива для девушкиОтсутствие нагнетателя в составе ГТД [ править | править код ]
В газотурбинных ДВС нагнетатель формально отсутствует. Компрессор, входящий в состав любого газотурбинного ДВС, является абсолютно неотъемлемым элементом конструкции, обеспечивающим принципиальную возможность работы подобного ДВС, и такой компрессор в русскоязычном инженерно-техническом лексиконе нагнетателем не называется, хотя и выполняет функцию принудительного нагнетания воздуха.
Типы нагнетателей по их энергетическому приводу [ править | править код ]
Нагнетатель работает за счёт того или иного вида энергии, получаемой с самого ДВС либо напрямую, либо опосредованно. Возможно использование энергии выхлопных газов, механической энергии вращения валов ДВС, электрической энергии. В зависимости от своего энергетического привода конструкция нагнетателя имеет свои технические особенности и своё собственное название. Нагнетатели, работающие от энергии выхлопных газов, называются турбонагнетателями, от механического привода — приводными нагнетателями. Также есть нагнетатели, работающие от электрической энергии, но для их описания устоявшийся русскоязычный термин пока отсутствует и их можно называть как электронагнетателями, так и нагнетателями с электроприводом.
Смысл терминов «нагнетатель» и «компрессор» [ править | править код ]
Важным элементом нагнетателя является воздушный компрессор, который присутствует в конструкции абсолютно любого нагнетателя, независимо от его энергетического привода. При этом контексте агрегатного наддува оба термина — и нагнетатель и компрессор — используются наравне, в том числе в составе сложносоставных слов, типа турбонагнетатель/турбокомпрессор, что у непосвящённых в тему может вызвать вопросы к смысловым оттенкам терминов. Следует понимать, что с точки зрения семантики термин «нагнетатель» подразумевает функцию всего агрегата в целом, а «компрессор» — наименование энергетической машины и главного исполнительного узла абсолютно любого нагнетателя. В русскоязычном речевом обиходе равноправное использование обоих терминов применительно к наддуву фактически допустимо, а оба слова, как в простом, так и в сложносоставном виде в данном случае могут считаться синонимами.
В теории лопастных машин термины "нагнетатель" и "компрессор" не тождественны. Обычно лопастные машины, повышающие давление потока не более, чем на 10%, относят к вентиляторам; на 20. 25% – к нагнетателям; большие давления соответствуют компрессорам. В обиходе нагнетатель в сборе часто называют "турбиной", хотя в приводном нагнетателе турбина вообще отсутствует, а в газотурбинном является лишь приводом нагнетателя/компрессора.
Турбонагнетатель [ править | править код ]
Таковым является нагнетатель, конструкция которого включает в себя миниатюрную турбину, а принцип работы основан на использовании энергии потока выхлопных газов самого мотора, на который осуществляется наддув. Выхлопные газы, воздействуя на турбину, располагающуюся в выпускной системе сразу за выпускным коллектором, раскручивают её, а она передаёт энергию вращения на компрессор. Принципиальная конструкция каждого из двух исполнительных узлов турбонагнетателя в общем и целом идентична для любой разработки, доведённой до стадии работающего агрегата, и предполагает одну радиальную одноконтурную турбину и один центробежный компрессор. При этом фактическая конструкция турбины, компрессора, вала и корпуса может быть весьма различной: так, помимо канонических простых совмещённых турбонагнетателей фиксированой геометрии на подшипниках скольжения, возможно применение турбин изменяемой геометрии, применение двойных спиральных каналов подвода газов к турбине (так называемый Twin-Scroll), применение двойных каналов выхода воздуха с компрессора, разнесение турбины и компрессора на существенное расстояние друг от друга, применение керамических роторов, установка вала на подшипниках качения. Важными (хотя и не особо декларируемыми) критериями мощности и эффективности турбонагнетателя являются наружные диаметры его турбинного и насосного колёс (что можно примерно оценить визуально по размеру корпуса), частота вращения ротора и величина турболага, присущего всем без исключения турбинам.
Турбонагнетатель всегда работает в режиме высоких температур выхлопных газов, а подшипники вала турбонагнетателя являются самой термонапряжённой деталью мотора, которая контактирует с моторным маслом, что накладывает особые требования как к технологии производства деталей, составляющих турбонагнетатель, так и к качеству масла и его ресурсу. И то и другое долгое время было одним из сдерживающих технологических факторов для какого-либо массового внедрения турбонагнетателей на бензиновых моторах .
Любой бензиновый мотор с турбонагнетателем изначально проектируется под наддув. Применение турбонагнетателя на бензиновом моторе, изначально спроектированном как
атмосферный , без переделок в принципе возможно, но приведёт к быстрому (если не моментальному) разрушению такого мотора при работе. Необходимость постоянного контроля детонации требует наличия некоей управляющей электроники, что обычно подразумевает систему питания мотора на основе электронного (или как минимум электронно-механического) впрыска. Массовые карбюраторные моторы с турбонагнетателями были крайне редки ввиду чрезмерной механической сложности своих систем питания. Широкое применение турбонагнетатели получили на дизельных моторах коммерческого транспорта — на моторах грузовиков, тракторов, локомотивов, судов. Здесь разрешающими факторами стали повышенная детонационная стойкость дизельных моторов и их более высокий КПД, предполагающий меньший уровень теплового излучения, относительная нетребовательность к эффективности работы мотора коммерческого транспорта в переходных режимах, достаточное пространство моторного отсека.
Особенностью работы турбонагнетателя в сравнении с другими агрегатами наддува является то, что в случае его применения эффект от наддува всегда превышает энергетические затраты на наддув. То есть, для любого мотора, оснащённого турбонагнетателем, всегда возможно получить такой режим наддува, который форсирует мотор настолько, что разрушит его. Мощность любого мотора с турбонагнетателем в 100 % случаев ограничивается прочностью самого мотора, его моторесурсом, а не эффективностью турбонагнетателя. Необходимость ограничения эффекта наддува есть причина того, что турбонагнетатель никогда не применяется на моторах сам по себе, а только комплексно в составе системы турбонаддува, в которой он является основным её элементом, но не единственным.
Приводной нагнетатель [ править | править код ]
Таковым является нагнетатель, конструкция которого состоит из компрессора и некоего механического привода, посредством которого, в свою очередь, и обеспечивается работа нагнетателя за счёт использования мощности, получаемой с мотора, на который осуществляется наддув. Единого общего вида у приводного нагнетателя нет. Исходя из принципов работы своего компрессора, приводные нагнетатели могут быть объёмные, то есть осуществляющие наддув импульсно порциями некоего фиксированного объёма, и динамические, то есть осуществляющие наддув непрерывным потоком. В группу объёмных нагнетателей попадают такие конструкции как: кулачковые (американские Roots, Eaton), винтовые (американский Lisholm, немецкий Mercedes 2000-х годов), спиральные (немецкий G-Lader, применявшийся на Volkswagen 1990-х), шиберные (британский нагнетатель PowerPlus для довоенных MG и Rolls-Royce Merlin). Динамические приводные нагнетатели известны только центробежного типа, известных собственных названий они обычно не имеют, а их конструкция более-менее универсальна и в общем и целом схожа с конструкцией некоего канонического центробежного компрессора. В обоих случаях, независимо от типа компрессора, конструкция его механического привода не имеет принципиального значения для работы нагнетателя в целом, с теми лишь особенностями, что привод компрессора имеет повышающее передаточное отношение (порядка 0,15-0,08), а иные конструкции привода позволяют включать/отключать нагнетатель (в том числе по аналоговому принципу) по команде водителя или блока управления. Сами приводы возможны промежуточными валами, шестернями, зубчатыми ремнями, цепями, набором трапецеидальных ремней, а также прямые приводы с торцов коленчатого или распределительного валов. В случаях отключаемого привода используются муфты различной конструкции.
Читайте также: Пыльник троса ручника ваз
Особенностью работы приводного нагнетателя в сравнении с другими агрегатами наддува является то, что на его привод мотор вынужден расходовать существенную часть своей так называемой индикаторной мощности. Это приводит к тому, что все моторы с приводными нагнетателями имеют высокий удельный расход топлива, который может в разы превышать удельный расход топлива безнаддувного мотора сравнимой нетто-мощности. На высоких оборотах мотора затраты мощности на привод нагнетателя растут нелинейно относительно роста отдачи от его применения, что ещё более увеличивает значения удельного расхода топлива, а сама разница между индикаторной мощностью и нетто-мощностью на максимальных режимах может достигать значения в 50% от нетто.
Ввиду относительно низкого уровня термонапряжённости при работе, приводные нагнетатели относительно нетребовательны к технологии металлов и качеству смазки, и работоспособный надёжный агрегат наддува на основе приводного нагнетателя был доступен к производству практически одновременно с появлением массовых автомобилей. Однако ввиду требований к точности производства деталей приводные нагнетатели были в любом случае дороги, и их применение в первой половине XX-го века ограничивалось эксклюзивными, псевдоспортивными или гоночными автомобилями. Второй областью применения приводных нагнетателей были поршневые авиамоторы, в которых наддув был призван компенсировать понижение атмосферного давления на высоте и связанное с этим разрежение воздуха. После 2МВ авиация перешла на турбореактивные двигатели, а конструкторы автомобильных моторов пошли по пути безнаддувной форсировки, в результате чего приводные нагнетатели оказались почти забыты, и их уделом остался лишь американский тюнинг или некоторые американские и редкие европейские модели дорожных машин. В начале 2000-х приводные нагнетатели стали появляться на относительно недешёвых дорожных машинах в составе комбинированных агрегатов наддува в паре с турбонагнетателем. Подобные системы наддува применяются до сегодняшнего момента, хотя в последние годы существует тенденция вытеснения комбинированного наддува эффективным всережимным турбонаддувом на основе турбин типа Twin-Scroll или турбин изменяемой геометрии, а также комбинированным наддувом из турбонагнетателя и электронагнетателя.
Специфика применения на автомобильных моторах [ править | править код ]
На бензиновых моторах серийных легковых автомобилей в случаях разработки мотора под наддув на основе приводного нагнетателя таковой нагнетатель всегда будет только объёмного типа. Обоснованием этого является то важное качество любых объёмных компрессоров, что их производительность всегда имеет линейную зависимость от частоты вращения ротора. Именно поэтому моторы с объёмными нагнетателями удобны для водителя: они работают в переходных режимах не хуже безнаддувных (у них отсутствует какая-либо задержка в раскрутке мотора при нажатии на педаль газа) и увеличивают крутящий момент во всём диапазоне оборотов, что на моторе с объёмным нагнетателем особенно ощутимо на «низах». Также у объёмных нагнетателей есть то конструктивное преимущество, что их применение не требует каких-либо дополнительных управляющих элементов и системах (клапанах сброса давления, электронных блоков управления, дополнительных датчиков), что в периоды отсутствия электронных систем впрыска позволяло легко устанавливать объёмные приводные нагнетатели на карбюраторные моторы или моторы с механическим впрыском. В современных системах комбинированного наддува в случае применения объёмных приводных нагнетателей, таковые отвечают за наддув на низких оборотах мотора и выводятся из работы управляющими системами по достижению достаточного давления наддува параллельно работающего турбонагнетателя.
Центробежные нагнетатели также могут применяться на бензиновых моторах легковых автомобилей. Но ввиду того, что в любых центробежных компрессорах зависимость объёма перекачиваемого вохдуха от числа оборотов не является линейной, приводные нагнетатели на их основе делаются либо кратковременно подключаемыми (наподобие машин американского тюнинга), либо устанавливаются на моторы, для которых эффективность работы в переходных режимах и эффективность работы на «низах» не сильно важна (например, машины для гонок на дистанцию в четверть мили). При этом установка подключаемого приводного центробежного нагнетателя на изначально безнаддувный мотор может и не требовать доработок под наддув, если время работы мотора в режиме наддува ограничено. А установка постоянно работающего приводного центробежного нагнетателя помимо доработок под наддув может потребовать наличия клапанов сброса давления (что не нужно в случае объёмных нагнетателей). В любом случае обычные серийные дорожные автомобили приводными центробежными нагнетателями не оснащаются.
И объёмные и центробежные приводные нагнетатели могут применяться не только на бензиновых моторах легковых автомобилей, но и на бензиновых и дизельных моторах тяжёлой техники. Выбор приводного нагнетателя, а не более подходящего турбонагнетателя, здесь, вероятно, объясняется спецификой эксплуатации. Примером первого случая является американский танковый бензиновый мотор Teledyne Continental AVSI-1790; примером второго — советский/российский танковый дизельный мотор В-46.
В современном массовом автомобильном моторостроении использование приводных нагнетателей сходит на нет. Главной причиной этого являются механические потери на привод, выражающиеся в повышенном расходе топлива и повышенных выбросах углекислого газа. Адекватной заменой объёмных приводных нагнетателей сегодня являются турбонагнетатели с турбинами типа Twin-Scroll и с турбинами изменяемой геометрии, а также применение нагнетателей с электроприводом в системах комбинированного наддува, что во всех случаях так или иначе помогает решать проблему турболага в переходных режимах и проблему низкой эффективности обычного турбонаддува на низких оборотах мотора.
Специфика применения на двухтактных моторах [ править | править код ]
На отдельных типах бензиновых и дизельных двухтактных моторов (с клапанной-щелевой продувкой, со встречным движением поршней), работа которых предполагает относительно невысокие обороты, в качестве неотъемлемого элемента всей конструкции для целей продувки цилиндров на стыке двух рабочих тактов применяются приводные нагнетатели низкого давления. В советском инженерно-техническом лексиконе подобные приводные нагнетатели назывались терминами «воздуходувка» или «продувочный насос». Обеспечиваемое ими давление наддува обычно порядка 0,1-0,2 Бара. На высокооборотных моторах с щелевой продувкой (например, мотоциклетных) подобные воздуходувки/насосы не применяются, и там продувка цилиндров обеспечивается иными способами.
Известны разработки воздуходувок/насосов как на основе объёмных компрессоров, так и на основе центробежных. Пример первого варианта — советские автомобильные дизельные моторы ЯАЗ-204 и ЯАЗ-206. Пример второго варианта — советский/украинский танковый многотопливный мотор 5ТДФ. При этом свойство центробежных компрессоров увеличивать давление наддува с ростом оборотов может использоваться и для целей форсировки мотора в режиме высоких оборотов. Наличие воздуходувки/насоса не отменяет возможности дополнения подобного двухтактного мотора турбонагнетателем, задачей которого является форсировка мотора в чистом виде. Примером таких моторов с турбонаддувом и без будут конструктивно идентичные локомотивные дизели 10Д100 и 2Д100 тепловозов ТЭ10 и ТЭ3.
Читайте также: Кама 505 тесты за рулем
Электронагнетатель [ править | править код ]
Принцип работы электронагнетателя (нагнетателя с электрическим приводом) основан на использовании для привода компрессора электроэнергии из бортовой электрической сети автомобиля. Принципиальная конструкция в общем и целом едина — высокооборотный электромотор и связанный с ним общим валом центробежный компрессор.
Подобные нагнетатели получают распространение на бензиновых моторах легковых автомобилей в последние годы, ввиду широкого внедрения бортовых электросетей с относительно высоким напряжением (
50V) и включением в состав силового агрегата мощных генераторов, аккумуляторов большой ёмкости и конденсаторов. При этом электронагнетатели являются лишь частью общего агрегата наддува и комбинируются с турбонагнетателем (одним или двумя) для совместной работы в рамках функции наддува. Включение электронагнетателя здесь обычно ограничивается переходными режимами работы самого мотора, и в первую очередь такими, на которых эффективность турбонагнетателя низка, например, раскруткой мотора с оборотов холостого хода. В качестве постоянного источника наддува электронагнетатели не применяются, ввиду существенных потерь на перевод механической энергии ДВС в электрическую для питания электромотора и опять в механическую для работы компрессора.
Механический наддув является одним из способов повысить мощность двигателя. Главным элементом такой системы является механический нагнетатель (Supercharger или compressor). Он представляет собой компрессор, приводимый в действие за счет вращения коленчатого вала. Установка механического нагнетателя обеспечивает увеличение мощности двигателя до 50%. Supercharger осуществляет забор воздуха через воздушный фильтр, сжимает и далее отправляет его во впускной коллектор ДВС, что и способствует повышению мощности последнего.
Конструкция и принцип работы механического наддува
В современном автомобилестроении применяется несколько видов систем механического наддува, каждая из которых имеет свои конструктивные особенности и принцип нагнетания воздуха.
Устройство механического наддува
Система механического наддува состоит из следующих элементов:
- механический нагнетатель (компрессор);
- интеркулер;
- дроссельная заслонка;
- заслонка перепускного трубопровода;
- воздушный фильтр;
- датчики давления наддува;
- датчики температуры воздуха во впускном коллекторе.
Схема работа механического наддува
Управление механическим нагнетателем осуществляется при помощи дроссельной заслонки, которая при высоких оборотах открыта. При этом заслонка трубопровода закрыта, и весь воздух поступает во впускной коллектор двигателя. Когда двигатель работает на низких оборотах, дроссельная заслонка открыта под небольшим углом, а заслонка трубопровода открыта полностью, что обеспечивает возврат части воздуха на вход компрессора.
Поступающий из нагнетателя воздух проходит через интеркулер, что снижает температуру нагнетаемого воздуха примерно на 10°C, способствуя более высокой степени его сжатия.
Типы привода механического наддува
Передача крутящего момента от коленчатого вала к механическому компрессору может осуществляться различными способами:
- Система прямого привода — предполагает монтаж компрессора непосредственно на фланец коленчатого вала двигателя.
- Ременный привод. Передача усилий реализуется при помощи ремня. Различные производители используют свои виды ремней (плоские, клиновидные или зубчатые). Системы с использованием ремня характеризуются коротким сроком службы и вероятностью возникновения проскальзывания.
- Цепной привод. Имеет аналогичный ременному приводу принцип.
- Шестеренчатый привод. Недостатком такой системы является повышенный шум и большие габариты.
Виды механических компрессоров
Каждый тип привода наддува имеет свои эксплуатационные особенности. Всего различают три вида механических нагнетателей:
- Центробежный нагнетатель. Самый распространенный вид механических нагнетателей. Основной рабочий элемент системы — колесо (крыльчатка), которое имеет сходную конструкцию с компрессорным колесом турбины. Оно вращается со скоростью порядка 60 000 оборотов в минуту. При этом воздух всасывается в центральную часть компрессорного колеса в режиме высокой скорости и малого давления. Пройдя через лопасти нагнетателя, воздух подается во впускной коллектор, но уже в режиме низкой скорости и высокого давления. Этот вид нагнетателя используется в комплексе с турбокомпрессорами для устранения турбоямы.
- Винтовой нагнетатель. Представляет собой систему из двух вращающихся шнеков (винтов) конической формы. Воздух, попадая в более широкую часть, проходит по камерам компрессора и, благодаря вращению, сжимается и нагнетается в патрубок впускного коллектора. Такие системы применяются в основном на спортивных и дорогостоящих автомобилях, поскольку достаточно сложны в изготовлении. Их преимущество — высокая эффективность работы.
- Кулачковый нагнетатель (roots). Один из первых видов механических нагнетателей. Конструктивно он представляет собой два ротора со сложным профилем сечения. Оси вращения роторов соединяются двумя одинаковыми шестернями. При вращении системы воздух перемещается между стенками корпуса и кулачками, в результате чего происходит его нагнетание во впускной трубопровод. Недостатком этой системы является образование избыточного давления, что провоцирует сбои в работе наддува. Для устранения этого явления в конструкции кулачкового нагнетателя предусматриваются либо муфта с электрическим приводом (управление с отключением нагнетателя), либо перепускной клапан (без отключения нагнетателя).
Механические нагнетатели довольно часто применяются на автомобилях марок Cadillac, Audi, Mercedes-Benz а также Toyota. При этом кулачковые и винтовые компрессоры устанавливаются преимущественно на мощных спортивных автомобилях с бензиновыми двигателями, а центробежные входят в систему двойного турбонаддува для дизельных моторов.
Преимущества и недостатки схемы с механическим нагнетателем
В сравнении с турбонагнетателем механическая система наддува приводится в движение не отработавшими газами двигателя, а за счет вращения коленчатого вала. Это означает, что, с одной стороны, мощность мотора увеличивается, а с другой — возникает дополнительная нагрузка, отбирающая, в зависимости от вида компрессора, до 30% производительности двигателя. Также минусом системы является высокий уровень шума, который создает привод системы.
Использование механического наддува на повышенных оборотах провоцирует более быстрый износ деталей двигателя, а потому они должны быть изготовлены из материалов повышенной прочности.
Основным достоинством механического привода является низкая стоимость изготовления (в сравнении с турбонаддувом), простота монтажа, а также мгновенный отклик системы на повышение оборотов двигателя. Так системы с винтовыми и кулачковыми компрессорами обеспечивают высокую динамику разгона, а центробежные нагнетатели стабильную работу двигателя на высоких скоростях.
Помимо привода от коленчатого вала двигателя, механический наддув может работать за счет отдельного электродвигателя. В этом случае потери мощности мотора удается избежать.
Источник: