Диоды в генераторах переменного тока служат для

Авто

Содержание

  • Содержание
  • Классификация [ править | править код ]
  • Применение [ править | править код ]
    • Выпрямление электрического тока [ править | править код ]
      • Блоки питания аппаратуры [ править | править код ]
      • Выпрямители электросиловых установок [ править | править код ]
      • Сварочные аппараты [ править | править код ]
      • Вентильные блоки преобразовательных подстанций систем энергоснабжения [ править | править код ]
      • Выпрямители высокочастотных колебаний [ править | править код ]
    • Детектирование высокочастотного сигнала [ править | править код ]
      • Баллистический выпрямитель [ править | править код ]
  • Характеристики [ править | править код ]
  • Типовые схемы [ править | править код ]
    • Двухполупериодный выпрямитель [ править | править код ]
  • Однофазные выпрямители [ править | править код ]
    • Однополупериодный выпрямитель (четвертьмост) [ править | править код ]
    • Рекомендуем посмотреть:

Выпрямитель 1 содержит шесть диодов VD1 — VD6, образующих два пле­ча: в одном аноды трех диодов VD1 — VD3 соединены с выводом «+» генератора, а в другом катоды диодов VD4 — VD6 – с выводом «-». В принятой на автомобилях однопроводной схеме минусовой вывод соединен с массой. К выпрямителю подведены выводы фазных обмоток статора генератора (на рисунке показано соединение в звезду). Наведенные в обмотках фаз переменные напря­жения иф1 — ифз сдвинуты на 1/3 периода, что характерно для трехфазной системы.

Диоды выпрямителя при изменении трехфазного напряжения во времени переходят из закрытого состояния в открытое, в результа­те ток нагрузки имеет только одно направление — от вывода «+» генератора к выводу «-».

Рис. Схема генераторной установки (а) и диаграммы напряжений (б):
1– трехфазный мостовой выпрямитель; 2 – дополнительный выпрями­тель; 3 – регулятор напряжения

Как видно из рисунке б, в момент времени 0, напряжение в об­мотке L1 отсутствует; в обмотке L3 положительное, а в обмотке L2 отрицательное. За положительное напряжение принято направле­ние стрелки к средней точке 0 обмотки статора. Вы­прямленный ток поступает к потребителям в направлении стрелок через находящиеся в открытом состоянии диоды VD3 и VD4.

В момент времени t1 напряжение в обмотке L2 отсутствует, в обмотке L1 положительное, а в обмотке L3 отрицательное. Вы­прямленный ток поступает к потребителям через диоды VD1 и VD5. В каждом плече выпрямителя в течение приблизительно 1/3 периода открыт один диод.

Линейное напряжение при соединении в звезду в 1,73 раза больше, чем при соединении в треугольник. Поэтому при соедине­нии в треугольник в обмотке статора должно быть больше витков, чем при соединении в звезду. Однако ток фазы при соединении в треугольник в 1,73 раза меньше, чем при соединении в звезду. Со­единение обмотки статора в треугольник для генераторов большой мощности позволяет выполнить ее из более тонкого провода.

Выпрямители некоторых генераторов имеют дополнительное плечо, соединенное со средней точкой 0 обмотки статора. Такая схема позволяет увеличить мощность генератора на 15…20% за счет действия третьих гармонических составляющих фазного на­пряжения.

Выпрямленное напряжение Ud имеет пульсирующий характер. Аккумуляторная батарея GB служит своеобразным фильтром, сглаживающим выпрямленное напряжение генератора, при этом ток батареи получается пульсирующим.

В вентильном генераторе диоды выпрямителя не проводят ток от аккумуляторной батареи к обмотке статора, в связи с чем отсут­ствует необходимость в реле обратного тока. Это значительно уп­рощает схему генераторной установки. При длительной стоянке автомобиля возможна разрядка аккумуляторной батареи на обмот­ку возбуждения. Поэтому в некоторых моделях автомобильных ге­нераторов обмотку возбуждения подсоединяют к дополнительному выпрямителю 2. Дополнительный выпрямитель выполнен на трех диодах VD7- VD9, аноды которых соединены с выводом Д. На об­мотку возбуждения в этом случае подается только напряжение от генератора через дополнительный выпрямитель 2 и плечо выпря­мителя 1 с диодами VD4-VD6.

Использование дополнительного выпрямителя имеет и негатив­ную сторону, связанную с самовозбуждением генератора. Генера­тор может самовозбудиться при наличии в нем остаточного маг­нитного потока и достаточно низком сопротивлении цепи возбуж­дения. Поэтому для появления напряжения в рабочем диапазоне частот вращения его ротора в схеме используется контрольная лампа HL обеспечивающая надежное возбуждение генератора.

Существенным недостатком щеточных генераторов, является наличие контактного узла, со­стоящего из электрических щеток и колец, через который к вращающейся обмотке возбуждения подводится ток. Узел этот подвержен изна­шиванию. Пыль, грязь, топливо и масло, попадая на контактный узел, быстро выводят его из строя.

В выпрямительных блоках отечественных автомобильных генераторов обычно используются диоды Д104-20, Д104-25, Д104-35, рассчитанные, соответственно на максимально допустимые токи 20, 25, 35 А. В трехфазных генераторах максимальный ток генератора не должен превосходить утроенную величину максимально допустимого тока через диод. Так , если применены диоды, на максимально допустимый ток 20 А, то при использовании выпрямительного моста с шестью такими диодами максимальный ток генератора не может превосходить 60 А. Если требуется генератор на больший ток, то можно использовать выпрямительный блок с диодами на больший максимально допустимый ток или выпрямительный блок с двенадцатью диодами.

Рисунок 8.1 – Схема выпрямительного блока с двенадцатью диодами.

Следует отметить, что удвоения тока генератора при увеличении в два раза числа диодов не происходит, так как ток между двумя параллельными диодами распределяется неравномерно. От выпрямительного блока показанного на рисунке 8.1 с диодами на 20 А можно получить ток 90-100 А. Для того, чтобы обеспечить больший выходной ток генератора можно увеличить количество фаз обмотки статора. Число фаз выбирается нечетным, например 5,7,9 и так далее. При использовании четного числа фаз количество пульсаций выпрямленного напряжения уменьшается в 2 раза по сравнению с нечетным числом фаз, а их амплитуда растет, что отрицательно сказывается на качестве выходного напряжения генератора.

Читайте также:  Как называется в прикуриватель слушать музыку

На на спецавтомобилях используется пятифазный генератор с пятифазным основным выпрямительным мостом и трехфазным дополнительным выпрямителем для питания обмотки возбуждения .

Рисунок 8.2 – Схема выпрямительного блока для генератора с пятью фазами и дополнительным выпрямителем.

Токи в обмотке возбуждения невелики, поэтому использовать пятифазный выпрямитель нецелесообразно. Для питания обмотки возбуждения используется трехфазный выпрямительный мост, подключаемый так, чтобы напряжение на его выходе было максимальным.

В современных генераторах иногда используются трехфазные выпрямительные мосты, имеющие 4 плеча.

Рисунок 8.3 – Особенности работы выпрямителя с дополнительным плечом.

Четвертое плечо входом подключается к нейтрали обмотки статора и служит для выпрямления высших гармоник. Дело в том, что в реальном генераторе форма фазного напряжения отличается от синусоиды. Она представляет собой сумму гармоник – первой, частота которой совпадает с частотой фазного напряжения, и высшими, для трехфазных генераторов, главным образом третьей.

Рисунок 8.4 – Фазное напряжение в виде суммы синусоид первой и третьей гармоник.

Сдвиг 120° между фазами генератора для первой гармоники соответствует сдвигу 360°для третьей гармоники, 720° для шестой гармоники и так далее для гармоник, кратных трем. Поэтому третьи гармоники и гармоники кратные трем разных фаз трехфазного генератора имеют векторы направленные одинаково ( и на рисунке 8.3, а). В линейных напряжениях, которые являются векторной суммой двух фазных напряжений, гармоники, кратные трем, уничтожаются ( ). Обычный выпрямитель не выпрямляет третьи гармоники, так как он выпрямляет линейное напряжение.

Для того, чтобы использовать мощность, развиваемую третьей гармоникой, к выпрямителю добавляют дополнительное плечо. Это плечо подключается к нейтральной точке обмотки статора (см. рисунок 5.8, б). Таким образом на вход выпрямительного блока подаются фазные напряжения, в которых содержатся гармоники кратные трем. Поэтому выпрямитель, показанный на рисунке 5.8, б дополнительно выпрямляет гармоники кратные трём. Применение дополнительного плеча увеличивает мощность генератора на 5 – 15 %.

На дорогих автомобилях устанавливается сложная электроника, которая очень чувствительна к перенапряжениям. Для избавления от перенапряжений вместо диодов в выпрямительном блоке применяются стабилитроны, напряжение стабилизации которых в 1,5 раза больше чем напряжение генератора.

Рисунок 8.5 – Схема выпрямительного моста с применением стабилитронов.

Если мгновенное значение напряжения на выходе генератора превзойдет трехкратное номинальное напряжение генератора, то стабилитроны пробьются и подгрузят генератор дополнительным током, что приведет к понижению амплитуды импульса выходного напряжения генератора.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9755 – | 7376 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Выпрями́тель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования входного электрического тока переменного направления в ток постоянного направления [1] (то есть однонаправленный ток), в частном случае — в постоянный выходной электрический ток.

Большинство выпрямителей создаёт не постоянный, а пульсирующий ток, для сглаживания пульсаций применяют фильтры.

Устройство, выполняющее обратную функцию — преобразование постоянного тока в переменный ток называется инвертором.

Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

Содержание

Классификация [ править | править код ]

Выпрямители классифицируют по следующим признакам:

  • по виду переключателя выпрямляемого тока
  • механические синхронные с щёточноколлекторным коммутатором тока [2] ;
  • механические синхронные с контактным переключателем (выпрямителем) тока;
  • с электронной управляемой коммутацией тока (например, тиристорные);
  • электронные синхронные (например, транзисторные) — как разновидность выпрямителей с управляемой коммутацией;
  • с электронной пассивной коммутацией тока (например, диодные);
  • по мощности
    • силовые выпрямители[3] ;
    • выпрямители сигналов [4] ;
    • по степени использования полупериодов переменного напряжения
      • однополупериодные — пропускают в нагрузку только одну полуволну ;
      • двухполупериодные — пропускают в нагрузку обе полуволны
      • ;
      • неполноволновые — не полностью используют синусоидальные полуволны;
      • полноволновые — полностью используют синусоидальные полуволны;
      • по схеме выпрямления — мостовые
      • , с умножением напряжения, трансформаторные, с гальванической развязкой, бестрансформаторные и пр.;
      • по количеству используемых фаз — однофазные, двухфазные, трёхфазные и многофазные;
      • по типу электронного вентиля — полупроводниковые диодные, полупроводниковые тиристорные, ламповые диодные (кенотронные), газотронные, игнитронные, электрохимические и пр.;
      • по управляемости — неуправляемые (диодные), управляемые (тиристорные);
      • по количеству каналов — одноканальные, многоканальные;
      • по величине выпрямленного напряжения — низковольтные (до 100 В), средневольтовые (от 100 до 1000 В), высоковольтные (свыше 1000 В);
      • по назначению — сварочный, для питания микроэлектронной схемы, для питания ламповых анодных цепей, для гальваники и пр.;
      • по степени полноты мостов — полномостовые, полумостовые, четвертьмостовые;
      • по наличию устройств стабилизации — стабилизированные, нестабилизированные;
      • по управлению выходными параметрами — регулируемые, нерегулируемые;
      • по индикации выходных параметров — без индикации, с индикацией (аналоговой, цифровой);
      • по способу соединения — параллельные, последовательные, параллельно-последовательные;
      • по способу объединения — раздельные, объединённые звёздами, объединённые кольцами;
      • по частоте выпрямляемого тока — низкочастотные, среднечастотные, высокочастотные.
      • Читайте также:  Бензобак лада калина цена

        Применение [ править | править код ]

        Выпрямление электрического тока [ править | править код ]

        Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток. Применение выпрямителей для преобразования переменного тока в постоянный вызвало понятие среднего значения тока по модулю (то есть без учёта знака ординаты) за период. При двухполупериодном выпрямлении среднее значение по модулю определяется как среднеарифметическое значение всех ординат обеих полуволн за целый период без учёта их знаков (то есть полагая все ординаты за период положительными, что и имеет место при двухполупериодном идеальном выпрямлении).

        Приёмниками электроэнергии с нелинейными характеристиками являются в первую очередь всевозможные преобразовательные установки переменного тока в постоянный, использующие различные вентили.

        Сюда относятся выпрямительные установки для:

        • железнодорожной тяги
        • городского электротранспорта
        • электролиза (производство алюминия, хлора, едкого натра и др., электрохимическое осаждение металлов)
        • питания приводов прокатных станов
        • возбуждения генераторов электростанций

        В качестве вентилей до последнего времени использовались в основном ртутные выпрямители (неуправляемые и управляемые). В настоящее время широкое применение находят преимущественно кремниевые полупроводниковые выпрямители. Внедряются тиристорные выпрямители.

        Обычно выпрямительные установки выполняются большой мощности и присоединяются через специальные трансформаторы к питающей сети на напряжении 6 — 10 кВ. Выпрямительные установки небольшой мощности выполняются по трехфазной схеме с нулевым выводом.

        Блоки питания аппаратуры [ править | править код ]

        Применение выпрямителей в блоках питания радио- и электроаппаратуры обусловлено тем, что обычно в системах электроснабжения зданий или транспортных средств (самолётов, поездов) применяется переменный ток, и выходной ток любого электромагнитного трансформатора, применённого для гальванической развязки цепей или для понижения напряжения, всегда переменный, тогда как в большинстве случаев электронные схемы и электродвигатели целевой аппаратуры рассчитаны на питание постоянным током.

        • Блоки питания промышленной и бытовой радио- и электроаппаратуры (в том числе так называемые адаптеры (англ. AC-DC adaptor )).
        • Блоки питания бортовой радиоэлектронной аппаратуры транспортных средств.

        Выпрямители электросиловых установок [ править | править код ]

        • Выпрямители питания главных двигателей постоянного тока автономных транспортных средств и буровых станков.

        Как правило, на автономных транспортных средствах (автомобилях, тракторах, тепловозах, теплоходах, атомоходах, самолётах) для получения электроэнергии применяют генераторы переменного тока, так как они имеют бо́льшую мощность при меньших габаритах и весе, чем генераторы постоянного тока. Но для приводов движителей транспорта обычно применяются двигатели постоянного тока, так как они позволяют простым переключением полюсов питающего тока управлять направлением движения, и имеют требуемую тяговую характеристику (большой крутящий момент при низкой частоте вращения ротора). Это позволяет отказаться от сложных, тяжёлых и ненадёжных коробок переключения передач. Также применяется и для привода бурильных станков буровых вышек.

        • Преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.

        Генерация электроэнергии на транспортном средстве обычно производится генератором переменного тока, но для питания бортовой аппаратуры необходим постоянный ток. Например, в легковых автомобилях бортовая сеть постоянного тока получает питание от полупроводникового выпрямителя, встроенного в генератор переменного тока.

        Сварочные аппараты [ править | править код ]

        В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах — вентилях, с целью получения постоянного сварочного тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного ( + <displaystyle +> ) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой. В ряде случаев, с использованием специальных сварочных электродов, электрическая дуговая сварка переменным током вообще невозможна.
        Вентильные блоки преобразовательных подстанций систем энергоснабжения [ править | править код ]

        • Для питания главных двигателей постоянного тока прокатных станов, кранов и другой техники

        Энергоснабжение заводов осуществляется электросетью переменного тока, но для приводов прокатных станов и других агрегатов выгоднее использовать двигатели постоянного тока по той же причине, что и для двигателей транспортных средств.

        • Для гальванических ванн (электролизёров) для получения цветных металлов и стали, нанесения металлических покрытий и гальванопластики.
        • Установки электростатической очистки промышленных газов (электростатический фильтр)
        • Установки очистки и обессоливания воды
        • Для электроснабжения контактных сетей электротранспорта постоянного тока (трамвай, троллейбус, электровоз, метро)
        • Для несинхронной связи энергосистем переменного тока [5]
        • Для дальней передачи электроэнергии постоянным током [6] .

        Выпрямители высокочастотных колебаний [ править | править код ]

        • в перспективных моделях солнечных батарей (КПД более 80%) [7] ;
        • в перспективных системах сбора энергии окружающих шумовых электромагнитных сигналов;
        • в перспективных системах беспроводной передачи электроэнергии.

        Детектирование высокочастотного сигнала [ править | править код ]

        Баллистический выпрямитель [ править | править код ]

        Баллистический выпрямитель, описанный в статье Room-Temperature Ballistic Nanodevices. Aimin M. Song [8] , может найти применение для детектирования очень высокочастотных сигналов (до 50 ГГц).

        Характеристики [ править | править код ]

        • Номинальное выходное напряжение постоянного тока и допустимый диапазон его изменения;
        • Номинальный ток нагрузки;
        • Диапазон эффективного входного напряжения переменного тока (например, 220 В ± 10 %);
        • Допустимая выходная пульсация, её амплитудно-частотные характеристики;
        • Нагрузочная характеристика.
        • Эквивалентное внутреннее комплексное (в первом приближении активное) сопротивление.
        • Коэффициент использования габаритной мощности трансформатора.

        Читайте также:  Моторчик печки от ваз 2108 на ниву

        Типовые схемы [ править | править код ]

        Двухполупериодный выпрямитель [ править | править код ]

        Может строиться по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов
        ; такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора).

        При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствие нагрузки, будет всегда равно амплитудному. Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствие нагрузки), будет напряжение до 17 вольт. Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины средневыпрямленного [ уточнить ] напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора.

        Соответственно, выбор величины переменного напряжения вторичной обмотки трансформатора, должен строиться исходя из максимальной допустимой величины подаваемого напряжения, а ёмкость сглаживающего конденсатора — должна быть достаточно большой, чтобы напряжение под нагрузкой не снизилось меньше минимально допустимого. На практике также учитывается неизбежное падение напряжения под нагрузкой — на сопротивлении проводов, обмотке трансформатора, диодах выпрямительного моста, а также возможное отклонение от номинального величины питающего трансформатор напряжения электрической сети.

        Следует отметить, что в выпрямителях с сглаживающим конденсатором диоды открываются не на весь полупериод напряжения, а на короткие промежутки времени, когда мгновенное значение переменного напряжения U ( t ) = U m s i n ( ω t ) <displaystyle U(t)=U_sin(omega t)> превышает постоянное напряжение на фильтрующем конденсаторе (т. е. в моменты вблизи максимумов синусоиды). Поэтому протекающий через диоды (и обмотку трансформатора) ток представляет собой короткие мощные импульсы сложной формы, амплитуда которых значительно превышает средний ток, потребляемый нагрузкой выпрямителя. Этот факт следует учитывать при расчёте трасформатора (вариант расчёта для работы не на активную нагрузку, а на выпрямитель с ёмкостным фильтром), и принимать меры для подавления возникающих импульсных помех.

        Однофазные выпрямители [ править | править код ]

        Однополупериодный выпрямитель (четвертьмост) [ править | править код ]

        Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток. На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами ёмкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя. Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 кГц, широко применяющихся в современной бытовой и промышленной аппаратуре. Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями ёмкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.

        Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

        Допущения: нагрузка чисто активная, вентиль — идеальный электрический ключ.

        Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю. Среднее значение переменного напряжения по отношению к подведенному действующему составит:

        U s = 1 2 π ∫ 0 π 2 U 2 s i n ( ω t ) d ( ω t ) = 2 U 2 π = 0 , 45 U 2 <displaystyle Us=<frac <1><2pi >>int limits _<0>^<pi ><sqrt <2>>U_<2>sin(omega t)d(omega t)=<frac <<sqrt <2>>U_<2>><pi >>=0,45U_<2>> . Эта величина вдвое меньше, чем в полномостовом. Важно отметить, что среднеквадратичное (устар. эффективное, действующее) значение напряжения на выходе однополупериодного выпрямителя будет в 2 <displaystyle <sqrt <2>>> меньше подведенного действующего, а потребляемая нагрузкой мощность в 2 раза меньше (для синусоидальной формы сигнала).

        • Большая величина пульсаций
        • Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)
        • Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном)
        • Протекающий через обмотку трансформатора ток имеет постоянную составляющую, что ухудшает магнитные свойства сердечника вследствие его подмагничивания [10] .
        • Экономия на количестве вентилей
        • Снижение падения напряжения и потерь мощности на выпрямителе (в мостовой схеме ток нагрузки протекает через два последовательно соединённых вентиля, в однополупериодной — через один).

        Источник: kalina-2.ru